手写体数字模式识别局部平均分类器的变换不变性

Seiji Hotta
{"title":"手写体数字模式识别局部平均分类器的变换不变性","authors":"Seiji Hotta","doi":"10.1109/ICDAR.2007.253","DOIUrl":null,"url":null,"abstract":"In this paper, a classification method designed by combining a local averaging classifier and a tangent distance is proposed for handwritten digit pattern recognition. In practice, first the k-nearest neighbors of an input sample are selected in each class by using a two-sided tangent distance. Next, the mean vectors of the selected transformed-neighbor samples are computed in individual classes. Finally, the input sample is classified to the class that minimizes the one sided tangent distance between the input sample and the mean one. The superior performance of the proposed method is verified with the experiments on benchmark datasets MNIST and USPS.","PeriodicalId":279268,"journal":{"name":"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transform-Invariance in Local Averaging Classifier for Handwritten Digit Pattern Recognition\",\"authors\":\"Seiji Hotta\",\"doi\":\"10.1109/ICDAR.2007.253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a classification method designed by combining a local averaging classifier and a tangent distance is proposed for handwritten digit pattern recognition. In practice, first the k-nearest neighbors of an input sample are selected in each class by using a two-sided tangent distance. Next, the mean vectors of the selected transformed-neighbor samples are computed in individual classes. Finally, the input sample is classified to the class that minimizes the one sided tangent distance between the input sample and the mean one. The superior performance of the proposed method is verified with the experiments on benchmark datasets MNIST and USPS.\",\"PeriodicalId\":279268,\"journal\":{\"name\":\"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2007.253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2007.253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种结合局部平均分类器和切线距离的手写体数字模式识别方法。在实践中,首先通过使用双向切线距离在每个类中选择输入样本的k个最近邻居。接下来,在各个类中计算所选择的转换邻居样本的平均向量。最后,将输入样本分类到使输入样本与平均值之间的单侧切线距离最小的类别。在MNIST和USPS的基准数据集上进行了实验,验证了该方法的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transform-Invariance in Local Averaging Classifier for Handwritten Digit Pattern Recognition
In this paper, a classification method designed by combining a local averaging classifier and a tangent distance is proposed for handwritten digit pattern recognition. In practice, first the k-nearest neighbors of an input sample are selected in each class by using a two-sided tangent distance. Next, the mean vectors of the selected transformed-neighbor samples are computed in individual classes. Finally, the input sample is classified to the class that minimizes the one sided tangent distance between the input sample and the mean one. The superior performance of the proposed method is verified with the experiments on benchmark datasets MNIST and USPS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信