{"title":"采用分布式准牛顿方法的穿壁雷达成像","authors":"Haroon Raja, W. Bajwa, F. Ahmad","doi":"10.1109/ACSSC.2017.8335142","DOIUrl":null,"url":null,"abstract":"This paper considers a distributed network of through-the-wall imaging radars and provides a solution for accurate indoor scene reconstruction in the presence of multipath propagation. A sparsity-based method is proposed for eliminating ghost targets under imperfect knowledge of interior wall locations. Instead of aggregating and processing the observations at a central fusion station, joint scene reconstruction and estimation of interior wall locations is carried out in a distributed manner across the network. Using alternating minimization approach, the sparse scene is reconstructed using the recently proposed MDOMP algorithm, while the wall location estimates are obtained with a distributed quasi-Newton method (D-QN) proposed in this paper. The efficacy of the proposed approach is demonstrated using numerical simulation.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Through-the-wall radar imaging using a distributed Quasi-Newton method\",\"authors\":\"Haroon Raja, W. Bajwa, F. Ahmad\",\"doi\":\"10.1109/ACSSC.2017.8335142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a distributed network of through-the-wall imaging radars and provides a solution for accurate indoor scene reconstruction in the presence of multipath propagation. A sparsity-based method is proposed for eliminating ghost targets under imperfect knowledge of interior wall locations. Instead of aggregating and processing the observations at a central fusion station, joint scene reconstruction and estimation of interior wall locations is carried out in a distributed manner across the network. Using alternating minimization approach, the sparse scene is reconstructed using the recently proposed MDOMP algorithm, while the wall location estimates are obtained with a distributed quasi-Newton method (D-QN) proposed in this paper. The efficacy of the proposed approach is demonstrated using numerical simulation.\",\"PeriodicalId\":296208,\"journal\":{\"name\":\"2017 51st Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"224 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 51st Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2017.8335142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Through-the-wall radar imaging using a distributed Quasi-Newton method
This paper considers a distributed network of through-the-wall imaging radars and provides a solution for accurate indoor scene reconstruction in the presence of multipath propagation. A sparsity-based method is proposed for eliminating ghost targets under imperfect knowledge of interior wall locations. Instead of aggregating and processing the observations at a central fusion station, joint scene reconstruction and estimation of interior wall locations is carried out in a distributed manner across the network. Using alternating minimization approach, the sparse scene is reconstructed using the recently proposed MDOMP algorithm, while the wall location estimates are obtained with a distributed quasi-Newton method (D-QN) proposed in this paper. The efficacy of the proposed approach is demonstrated using numerical simulation.