降低硬件复杂度的混沌发生器8位量化器

Zamarrud, M. Izharuddin
{"title":"降低硬件复杂度的混沌发生器8位量化器","authors":"Zamarrud, M. Izharuddin","doi":"10.4018/IJRSDA.2018070104","DOIUrl":null,"url":null,"abstract":"This article describes how nowadays, data is widely transmitted over the internet in the real time. Wherever the transmission or storage is required, security is needed. High speed processing hardware machine with reduced complexity are used for the security of the data, that are transmitted in real time. The information which is to be secure are encoded by pseudorandom key. Chaotic numbers are used in place of a pseudorandom key. The generated chaotic values are analogous in nature, these analog values are digitized to generate encryption key like 8-bit, 16-bit, 32-bit. To generate an 8-bit key, an 8-bit quantizer is required. The design of 8-bit quantizer requires 256 levels which needs lot of complex hardware to implement. In this article, an 8-bit quantizer is designed with reduced complexity, where hardware requirement is reduced by more than 12 times. Without compromising the randomness of the sequence generated. To increase the randomness and confusion timed hop random selection is used. The randomness of the sequence generated by the chaotic generators is analyzed by NIST test suite, to test for its randomness.","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"8-Bit Quantizer for Chaotic Generator With Reduced Hardware Complexity\",\"authors\":\"Zamarrud, M. Izharuddin\",\"doi\":\"10.4018/IJRSDA.2018070104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes how nowadays, data is widely transmitted over the internet in the real time. Wherever the transmission or storage is required, security is needed. High speed processing hardware machine with reduced complexity are used for the security of the data, that are transmitted in real time. The information which is to be secure are encoded by pseudorandom key. Chaotic numbers are used in place of a pseudorandom key. The generated chaotic values are analogous in nature, these analog values are digitized to generate encryption key like 8-bit, 16-bit, 32-bit. To generate an 8-bit key, an 8-bit quantizer is required. The design of 8-bit quantizer requires 256 levels which needs lot of complex hardware to implement. In this article, an 8-bit quantizer is designed with reduced complexity, where hardware requirement is reduced by more than 12 times. Without compromising the randomness of the sequence generated. To increase the randomness and confusion timed hop random selection is used. The randomness of the sequence generated by the chaotic generators is analyzed by NIST test suite, to test for its randomness.\",\"PeriodicalId\":152357,\"journal\":{\"name\":\"Int. J. Rough Sets Data Anal.\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Rough Sets Data Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJRSDA.2018070104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2018070104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇文章描述了如今,数据是如何在互联网上广泛实时传输的。任何需要传输或存储的地方,都需要安全性。为了保证实时传输数据的安全性,采用了低复杂度的高速处理硬件设备。需要安全的信息用伪随机密钥进行编码。混沌数被用来代替伪随机密钥。生成的混沌值在本质上是类似的,这些模拟值被数字化生成8位、16位、32位等加密密钥。要生成8位密钥,需要8位量化器。8位量化器的设计需要256级,需要大量复杂的硬件来实现。本文设计了一个复杂度较低的8位量化器,其硬件要求降低了12倍以上。而不影响生成序列的随机性。为了增加随机性和混淆性,采用了定时跳随机选择。利用NIST测试套件对混沌发生器产生的序列进行随机性分析,检验其随机性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
8-Bit Quantizer for Chaotic Generator With Reduced Hardware Complexity
This article describes how nowadays, data is widely transmitted over the internet in the real time. Wherever the transmission or storage is required, security is needed. High speed processing hardware machine with reduced complexity are used for the security of the data, that are transmitted in real time. The information which is to be secure are encoded by pseudorandom key. Chaotic numbers are used in place of a pseudorandom key. The generated chaotic values are analogous in nature, these analog values are digitized to generate encryption key like 8-bit, 16-bit, 32-bit. To generate an 8-bit key, an 8-bit quantizer is required. The design of 8-bit quantizer requires 256 levels which needs lot of complex hardware to implement. In this article, an 8-bit quantizer is designed with reduced complexity, where hardware requirement is reduced by more than 12 times. Without compromising the randomness of the sequence generated. To increase the randomness and confusion timed hop random selection is used. The randomness of the sequence generated by the chaotic generators is analyzed by NIST test suite, to test for its randomness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信