关键点描述子融合的实验研究

Yaling Pan, Li He, Y. Guan, Hong Zhang
{"title":"关键点描述子融合的实验研究","authors":"Yaling Pan, Li He, Y. Guan, Hong Zhang","doi":"10.1109/ROBIO55434.2022.10011825","DOIUrl":null,"url":null,"abstract":"Local feature descriptors play a crucial role in computer vision problems, especially robot motion. Existing descriptors are highly accurate, but their performance de-pends on the influence of distracting factors, such as illumi-nation and viewpoint. There is room for further improvement of these descriptors. In this paper, we provide an in-depth analysis of several exciting features of the descriptor fusion model (DFM) we have proposed in our recent work, which uses an autoencoder to combine descriptors and exploit their respective advantages. With this DFM framework, we fur-ther validate that fused descriptors can retain advantageous properties and that our DFM is a generally applicable method with respect to various component descriptors. Specifically, we evaluate multiple combinations of hand-crafted and CNN descriptors concerning their performance on a benchmark dataset with illumination and viewpoint changes to obtain comprehensive experimental results. The results show that the fused descriptors have better matching accuracy than their component descriptors.","PeriodicalId":151112,"journal":{"name":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Experimental Study of Keypoint Descriptor Fusion\",\"authors\":\"Yaling Pan, Li He, Y. Guan, Hong Zhang\",\"doi\":\"10.1109/ROBIO55434.2022.10011825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local feature descriptors play a crucial role in computer vision problems, especially robot motion. Existing descriptors are highly accurate, but their performance de-pends on the influence of distracting factors, such as illumi-nation and viewpoint. There is room for further improvement of these descriptors. In this paper, we provide an in-depth analysis of several exciting features of the descriptor fusion model (DFM) we have proposed in our recent work, which uses an autoencoder to combine descriptors and exploit their respective advantages. With this DFM framework, we fur-ther validate that fused descriptors can retain advantageous properties and that our DFM is a generally applicable method with respect to various component descriptors. Specifically, we evaluate multiple combinations of hand-crafted and CNN descriptors concerning their performance on a benchmark dataset with illumination and viewpoint changes to obtain comprehensive experimental results. The results show that the fused descriptors have better matching accuracy than their component descriptors.\",\"PeriodicalId\":151112,\"journal\":{\"name\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO55434.2022.10011825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO55434.2022.10011825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

局部特征描述子在计算机视觉问题,尤其是机器人运动问题中起着至关重要的作用。现有的描述符精度很高,但其性能受光照和视点等干扰因素的影响。这些描述符还有进一步改进的空间。在本文中,我们深入分析了我们在最近的工作中提出的描述符融合模型(DFM)的几个令人兴奋的特征,该模型使用自编码器来组合描述符并利用它们各自的优势。有了这个DFM框架,我们进一步验证了融合描述符可以保留有利的属性,并且我们的DFM是一种适用于各种组件描述符的通用方法。具体来说,我们评估了手工和CNN描述符的多种组合在光照和视点变化的基准数据集上的性能,以获得全面的实验结果。结果表明,融合描述子比其分量描述子具有更好的匹配精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Experimental Study of Keypoint Descriptor Fusion
Local feature descriptors play a crucial role in computer vision problems, especially robot motion. Existing descriptors are highly accurate, but their performance de-pends on the influence of distracting factors, such as illumi-nation and viewpoint. There is room for further improvement of these descriptors. In this paper, we provide an in-depth analysis of several exciting features of the descriptor fusion model (DFM) we have proposed in our recent work, which uses an autoencoder to combine descriptors and exploit their respective advantages. With this DFM framework, we fur-ther validate that fused descriptors can retain advantageous properties and that our DFM is a generally applicable method with respect to various component descriptors. Specifically, we evaluate multiple combinations of hand-crafted and CNN descriptors concerning their performance on a benchmark dataset with illumination and viewpoint changes to obtain comprehensive experimental results. The results show that the fused descriptors have better matching accuracy than their component descriptors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信