双均值图的定义

T. L. John, T. Varkey
{"title":"双均值图的定义","authors":"T. L. John, T. Varkey","doi":"10.9734/BPI/CTMCS/V5/3636F","DOIUrl":null,"url":null,"abstract":"Let G be a(p,q) graph and let: V(G) \\(\\rightarrow\\){0,1,2,…..,q} be an injection. The graph G is said to be a mean graph if for each edge there exists an induced map \\(f^*:E(G)\\rightarrow{1,2,…,q}\\) defined by \\(f^*(uv) = {f(u)+f(v) \\over 2}\\), if  \\(f(u)+f(v)\\) is even or \\({f(u)+f(v)+1 \\over 2}\\), if \\(f(u)+f(v)\\) is odd. The line graph of G is a graph in which the vertices are the edges (lines) of G and the two points of L(G) are adjacent whenever the corresponding lines of G are adjacent. In this chapter, we investigate the meanness of both G and L(G) and thus introduce the definition of bimean graphs.","PeriodicalId":137646,"journal":{"name":"Current Topics on Mathematics and Computer Science Vol. 5","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Definition of Bimean Graphs\",\"authors\":\"T. L. John, T. Varkey\",\"doi\":\"10.9734/BPI/CTMCS/V5/3636F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a(p,q) graph and let: V(G) \\\\(\\\\rightarrow\\\\){0,1,2,…..,q} be an injection. The graph G is said to be a mean graph if for each edge there exists an induced map \\\\(f^*:E(G)\\\\rightarrow{1,2,…,q}\\\\) defined by \\\\(f^*(uv) = {f(u)+f(v) \\\\over 2}\\\\), if  \\\\(f(u)+f(v)\\\\) is even or \\\\({f(u)+f(v)+1 \\\\over 2}\\\\), if \\\\(f(u)+f(v)\\\\) is odd. The line graph of G is a graph in which the vertices are the edges (lines) of G and the two points of L(G) are adjacent whenever the corresponding lines of G are adjacent. In this chapter, we investigate the meanness of both G and L(G) and thus introduce the definition of bimean graphs.\",\"PeriodicalId\":137646,\"journal\":{\"name\":\"Current Topics on Mathematics and Computer Science Vol. 5\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Topics on Mathematics and Computer Science Vol. 5\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/BPI/CTMCS/V5/3636F\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Topics on Mathematics and Computer Science Vol. 5","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/BPI/CTMCS/V5/3636F","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设G是一个(p,q)图,设V(G) \(\rightarrow\){ 0,1,2 ..}...这是一种注射。图G被称为平均图,如果对于每条边存在一个由\(f^*(uv) = {f(u)+f(v) \over 2}\)定义的诱导映射\(f^*:E(G)\rightarrow{1,2,…,q}\),如果\(f(u)+f(v)\)是偶数或\({f(u)+f(v)+1 \over 2}\),如果\(f(u)+f(v)\)是奇数。G的线形图是顶点是G的边(线),L(G)的两点在G的相应直线相邻时相邻的图。在本章中,我们研究了G和L(G)的均值,从而引入了双均值图的定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Definition of Bimean Graphs
Let G be a(p,q) graph and let: V(G) \(\rightarrow\){0,1,2,…..,q} be an injection. The graph G is said to be a mean graph if for each edge there exists an induced map \(f^*:E(G)\rightarrow{1,2,…,q}\) defined by \(f^*(uv) = {f(u)+f(v) \over 2}\), if  \(f(u)+f(v)\) is even or \({f(u)+f(v)+1 \over 2}\), if \(f(u)+f(v)\) is odd. The line graph of G is a graph in which the vertices are the edges (lines) of G and the two points of L(G) are adjacent whenever the corresponding lines of G are adjacent. In this chapter, we investigate the meanness of both G and L(G) and thus introduce the definition of bimean graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信