{"title":"使用眼动追踪技术来识别视觉和语言学习者","authors":"T. Mehigan, M. Barry, Aidan Kehoe, I. Pitt","doi":"10.1109/ICME.2011.6012036","DOIUrl":null,"url":null,"abstract":"Learner style data is increasingly being incorporated into adaptive eLearning (electronic learning) systems for the development of personalized user models. This practice currently relies heavily on the prior completion of questionnaires by system users. Whilst potentially improving learning outcomes, the completion of questionnaires can be time consuming for users. Recent research indicates that it is possible to detect a user's preference on the Global / Sequential dimension of the FSLSM (Felder-Silverman Learner Style Model) through a user's mouse movement pattern, and other biometric technology including eye tracking and accelerometer technology. In this paper we discuss the potential of eye tracking technology for inference of Visual / Verbal learners. The paper will discuss the results of a study conducted to detect individual user style data based on the Visual / Verbal dimension of the FSLSM.","PeriodicalId":433997,"journal":{"name":"2011 IEEE International Conference on Multimedia and Expo","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Using eye tracking technology to identify visual and verbal learners\",\"authors\":\"T. Mehigan, M. Barry, Aidan Kehoe, I. Pitt\",\"doi\":\"10.1109/ICME.2011.6012036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learner style data is increasingly being incorporated into adaptive eLearning (electronic learning) systems for the development of personalized user models. This practice currently relies heavily on the prior completion of questionnaires by system users. Whilst potentially improving learning outcomes, the completion of questionnaires can be time consuming for users. Recent research indicates that it is possible to detect a user's preference on the Global / Sequential dimension of the FSLSM (Felder-Silverman Learner Style Model) through a user's mouse movement pattern, and other biometric technology including eye tracking and accelerometer technology. In this paper we discuss the potential of eye tracking technology for inference of Visual / Verbal learners. The paper will discuss the results of a study conducted to detect individual user style data based on the Visual / Verbal dimension of the FSLSM.\",\"PeriodicalId\":433997,\"journal\":{\"name\":\"2011 IEEE International Conference on Multimedia and Expo\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2011.6012036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2011.6012036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using eye tracking technology to identify visual and verbal learners
Learner style data is increasingly being incorporated into adaptive eLearning (electronic learning) systems for the development of personalized user models. This practice currently relies heavily on the prior completion of questionnaires by system users. Whilst potentially improving learning outcomes, the completion of questionnaires can be time consuming for users. Recent research indicates that it is possible to detect a user's preference on the Global / Sequential dimension of the FSLSM (Felder-Silverman Learner Style Model) through a user's mouse movement pattern, and other biometric technology including eye tracking and accelerometer technology. In this paper we discuss the potential of eye tracking technology for inference of Visual / Verbal learners. The paper will discuss the results of a study conducted to detect individual user style data based on the Visual / Verbal dimension of the FSLSM.