没有初等矩阵的K1(R)的初等描述

T. Huettemann, Zuhong Zhang
{"title":"没有初等矩阵的K1(R)的初等描述","authors":"T. Huettemann, Zuhong Zhang","doi":"10.12958/adm1568","DOIUrl":null,"url":null,"abstract":"Let $R$ be a ring with unit. Passing to the colimit with respect to the standard inclusions $GL(n,R) \\to GL(n+1,R)$ (which add a unit vector as new last row and column) yields, by definition, the stable linear group $GL(R)$; the same result is obtained, up to isomorphism, when using the \"opposite\" inclusions (which add a unit vector as new first row and column). In this note it is shown that passing to the colimit along both these families of inclusions simultaneously recovers the algebraic $K$-group $K_1(R) = GL(R)/E(R)$ of~$R$, giving an elementary description that does not involve elementary matrices explicitly.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An elementary description of K1(R) without elementary matrices\",\"authors\":\"T. Huettemann, Zuhong Zhang\",\"doi\":\"10.12958/adm1568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a ring with unit. Passing to the colimit with respect to the standard inclusions $GL(n,R) \\\\to GL(n+1,R)$ (which add a unit vector as new last row and column) yields, by definition, the stable linear group $GL(R)$; the same result is obtained, up to isomorphism, when using the \\\"opposite\\\" inclusions (which add a unit vector as new first row and column). In this note it is shown that passing to the colimit along both these families of inclusions simultaneously recovers the algebraic $K$-group $K_1(R) = GL(R)/E(R)$ of~$R$, giving an elementary description that does not involve elementary matrices explicitly.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/adm1568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$R$是一个带单位的环。将标准包含项$GL(n,R) \传递给GL(n+1,R)$(其中添加了一个单位向量作为新的最后一行和最后一列),根据定义,得到稳定的线性群$GL(R)$;当使用“相反”包含(添加一个单位向量作为新的第一行和第一列)时,可以获得相同的结果,直至同构。本文证明了沿这两个包体族同时传递到极限可以恢复~$R$的代数$K$-群$K_1(R) = GL(R)/E(R)$,给出了一个不显式涉及初等矩阵的初等描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An elementary description of K1(R) without elementary matrices
Let $R$ be a ring with unit. Passing to the colimit with respect to the standard inclusions $GL(n,R) \to GL(n+1,R)$ (which add a unit vector as new last row and column) yields, by definition, the stable linear group $GL(R)$; the same result is obtained, up to isomorphism, when using the "opposite" inclusions (which add a unit vector as new first row and column). In this note it is shown that passing to the colimit along both these families of inclusions simultaneously recovers the algebraic $K$-group $K_1(R) = GL(R)/E(R)$ of~$R$, giving an elementary description that does not involve elementary matrices explicitly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信