移动机器人配送系统中的任务调度问题

Wei Yuan, Hui Sun
{"title":"移动机器人配送系统中的任务调度问题","authors":"Wei Yuan, Hui Sun","doi":"10.1109/ICACI49185.2020.9177514","DOIUrl":null,"url":null,"abstract":"This paper studies a task scheduling problem in the context of the mobile robot fulfillment system (MRFS), a parts-to-picker storage system where mobile robots bring movable racks to workstations. It determines the assignment of tasks of transporting racks to a fleet of robots with the objective of makespan minimization. A mixed integer programming model is presented to describe the problem. Aimed at quickly finding good solutions to this NP-hard problem, two heuristic rules and an ant colony optimization algorithm are developed. Computational experiments are conducted to evaluate the performance of the proposed heuristic solution procedures. It shows that the ant colony optimization algorithm generally has the best performance.","PeriodicalId":137804,"journal":{"name":"2020 12th International Conference on Advanced Computational Intelligence (ICACI)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Task Scheduling Problem in Mobile Robot Fulfillment Systems\",\"authors\":\"Wei Yuan, Hui Sun\",\"doi\":\"10.1109/ICACI49185.2020.9177514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies a task scheduling problem in the context of the mobile robot fulfillment system (MRFS), a parts-to-picker storage system where mobile robots bring movable racks to workstations. It determines the assignment of tasks of transporting racks to a fleet of robots with the objective of makespan minimization. A mixed integer programming model is presented to describe the problem. Aimed at quickly finding good solutions to this NP-hard problem, two heuristic rules and an ant colony optimization algorithm are developed. Computational experiments are conducted to evaluate the performance of the proposed heuristic solution procedures. It shows that the ant colony optimization algorithm generally has the best performance.\",\"PeriodicalId\":137804,\"journal\":{\"name\":\"2020 12th International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 12th International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI49185.2020.9177514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 12th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI49185.2020.9177514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了移动机器人履约系统(MRFS)中的任务调度问题,MRFS是一个由移动机器人将可移动的货架运送到工作站的从零件到拾取器的存储系统。它以最大完工时间最小化为目标,确定将货架运输任务分配给一组机器人。提出了一个混合整数规划模型来描述这一问题。为了快速求解这一NP-hard问题,提出了两个启发式规则和一种蚁群优化算法。进行了计算实验来评估所提出的启发式求解过程的性能。结果表明,蚁群优化算法一般具有最好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Task Scheduling Problem in Mobile Robot Fulfillment Systems
This paper studies a task scheduling problem in the context of the mobile robot fulfillment system (MRFS), a parts-to-picker storage system where mobile robots bring movable racks to workstations. It determines the assignment of tasks of transporting racks to a fleet of robots with the objective of makespan minimization. A mixed integer programming model is presented to describe the problem. Aimed at quickly finding good solutions to this NP-hard problem, two heuristic rules and an ant colony optimization algorithm are developed. Computational experiments are conducted to evaluate the performance of the proposed heuristic solution procedures. It shows that the ant colony optimization algorithm generally has the best performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信