在非阿基米德框架下的Mellin方法

Ibrahima Hamidine
{"title":"在非阿基米德框架下的Mellin方法","authors":"Ibrahima Hamidine","doi":"10.5802/afst.1602","DOIUrl":null,"url":null,"abstract":"We propose an approach of Mellin type for the approximation of integration currents or the effective realization of normalized Green currents associated with a cycle $ \\bigwedge_1^m[{\\rm div} (s_j)] $, where $s_j $ is a meromorphic section of a line bundle $ \\mathscr{L}_j \\rightarrow U$ over an open $U$ in a good Berkovich space when each $ \\mathscr{L}_j$ has a smooth metric and $ {\\rm codim}_{U}\\big (\\bigcap_{j \\in J} {\\rm Supp} [{\\rm div (s_j)}] \\big)\\geq \\# J$ for every set $ J \\subset \\{1, ..., p \\} $. We also study the transposition to the non archimedean context of Crofton and King formulas, particularly the approximate realization of Vogel and Segre currents.","PeriodicalId":122059,"journal":{"name":"Annales de la faculté des sciences de Toulouse Mathématiques","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approches courantielles à la Mellin dans un cadre non archimédien\",\"authors\":\"Ibrahima Hamidine\",\"doi\":\"10.5802/afst.1602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an approach of Mellin type for the approximation of integration currents or the effective realization of normalized Green currents associated with a cycle $ \\\\bigwedge_1^m[{\\\\rm div} (s_j)] $, where $s_j $ is a meromorphic section of a line bundle $ \\\\mathscr{L}_j \\\\rightarrow U$ over an open $U$ in a good Berkovich space when each $ \\\\mathscr{L}_j$ has a smooth metric and $ {\\\\rm codim}_{U}\\\\big (\\\\bigcap_{j \\\\in J} {\\\\rm Supp} [{\\\\rm div (s_j)}] \\\\big)\\\\geq \\\\# J$ for every set $ J \\\\subset \\\\{1, ..., p \\\\} $. We also study the transposition to the non archimedean context of Crofton and King formulas, particularly the approximate realization of Vogel and Segre currents.\",\"PeriodicalId\":122059,\"journal\":{\"name\":\"Annales de la faculté des sciences de Toulouse Mathématiques\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de la faculté des sciences de Toulouse Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/afst.1602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de la faculté des sciences de Toulouse Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/afst.1602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种Mellin类型的方法来逼近积分电流或与循环$ \bigwedge_1^m[{\rm div} (s_j)] $相关的归一化Green电流的有效实现,其中$s_j $是在良好Berkovich空间中开放$U$上的线束$ \mathscr{L}_j \rightarrow U$的亚纯截面,当每个$ \mathscr{L}_j$和$ {\rm codim}_{U}\big (\bigcap_{j \in J} {\rm Supp} [{\rm div (s_j)}] \big)\geq \# J$对于每个集$ J \subset \{1, ..., p \} $都有一个光滑度规。我们还研究了Crofton和King公式在非阿基米德背景下的转换,特别是Vogel和Segre电流的近似实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approches courantielles à la Mellin dans un cadre non archimédien
We propose an approach of Mellin type for the approximation of integration currents or the effective realization of normalized Green currents associated with a cycle $ \bigwedge_1^m[{\rm div} (s_j)] $, where $s_j $ is a meromorphic section of a line bundle $ \mathscr{L}_j \rightarrow U$ over an open $U$ in a good Berkovich space when each $ \mathscr{L}_j$ has a smooth metric and $ {\rm codim}_{U}\big (\bigcap_{j \in J} {\rm Supp} [{\rm div (s_j)}] \big)\geq \# J$ for every set $ J \subset \{1, ..., p \} $. We also study the transposition to the non archimedean context of Crofton and King formulas, particularly the approximate realization of Vogel and Segre currents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信