{"title":"稀疏矩阵二维快速二分划的中粒方法","authors":"D. Pelt, R. Bisseling","doi":"10.1109/IPDPS.2014.62","DOIUrl":null,"url":null,"abstract":"We present a new hyper graph-based method, the medium-grain method, for solving the sparse matrix partitioning problem. This problem arises when distributing data for parallel sparse matrix-vector multiplication. In the medium-grain method, each matrix nonzero is assigned to either a row group or a column group, and these groups are represented by vertices of the hyper graph. For an m×n sparse matrix, the resulting hyper graph has m+n vertices and m+n hyper edges. Furthermore, we present an iterative refinement procedure for improvement of a given partitioning, based on the medium-grain method, which can be applied as a cheap but effective post processing step after any partitioning method. The medium-grain method is able to produce fully two-dimensional bipartitionings, but its computational complexity equals that of one-dimensional methods. Experimental results for a large set of sparse test matrices show that the medium-grain method with iterative refinement produces bipartitionings with lower communication volume compared to current state-of-the-art methods, and is faster at producing them.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"A Medium-Grain Method for Fast 2D Bipartitioning of Sparse Matrices\",\"authors\":\"D. Pelt, R. Bisseling\",\"doi\":\"10.1109/IPDPS.2014.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new hyper graph-based method, the medium-grain method, for solving the sparse matrix partitioning problem. This problem arises when distributing data for parallel sparse matrix-vector multiplication. In the medium-grain method, each matrix nonzero is assigned to either a row group or a column group, and these groups are represented by vertices of the hyper graph. For an m×n sparse matrix, the resulting hyper graph has m+n vertices and m+n hyper edges. Furthermore, we present an iterative refinement procedure for improvement of a given partitioning, based on the medium-grain method, which can be applied as a cheap but effective post processing step after any partitioning method. The medium-grain method is able to produce fully two-dimensional bipartitionings, but its computational complexity equals that of one-dimensional methods. Experimental results for a large set of sparse test matrices show that the medium-grain method with iterative refinement produces bipartitionings with lower communication volume compared to current state-of-the-art methods, and is faster at producing them.\",\"PeriodicalId\":309291,\"journal\":{\"name\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2014.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Medium-Grain Method for Fast 2D Bipartitioning of Sparse Matrices
We present a new hyper graph-based method, the medium-grain method, for solving the sparse matrix partitioning problem. This problem arises when distributing data for parallel sparse matrix-vector multiplication. In the medium-grain method, each matrix nonzero is assigned to either a row group or a column group, and these groups are represented by vertices of the hyper graph. For an m×n sparse matrix, the resulting hyper graph has m+n vertices and m+n hyper edges. Furthermore, we present an iterative refinement procedure for improvement of a given partitioning, based on the medium-grain method, which can be applied as a cheap but effective post processing step after any partitioning method. The medium-grain method is able to produce fully two-dimensional bipartitionings, but its computational complexity equals that of one-dimensional methods. Experimental results for a large set of sparse test matrices show that the medium-grain method with iterative refinement produces bipartitionings with lower communication volume compared to current state-of-the-art methods, and is faster at producing them.