从例子中学习的np困难问题

Bin Chen, Guangri Quan
{"title":"从例子中学习的np困难问题","authors":"Bin Chen, Guangri Quan","doi":"10.1109/FSKD.2008.406","DOIUrl":null,"url":null,"abstract":"As designing practical algorithms of learning from examples, one has to deal with some optimization problems. The major optimization problems are: the smallest feature subset selection, the smallest decision tree induction, and the smallest k-DNF induction. In this paper, we show that all these optimization problems listed as above are NP-hard, and we present new greedy algorithms for solving these problems.","PeriodicalId":208332,"journal":{"name":"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"NP-Hard Problems of Learning from Examples\",\"authors\":\"Bin Chen, Guangri Quan\",\"doi\":\"10.1109/FSKD.2008.406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As designing practical algorithms of learning from examples, one has to deal with some optimization problems. The major optimization problems are: the smallest feature subset selection, the smallest decision tree induction, and the smallest k-DNF induction. In this paper, we show that all these optimization problems listed as above are NP-hard, and we present new greedy algorithms for solving these problems.\",\"PeriodicalId\":208332,\"journal\":{\"name\":\"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2008.406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2008.406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在设计实用的实例学习算法时,必须处理一些优化问题。主要的优化问题是:最小的特征子集选择、最小的决策树归纳和最小的k-DNF归纳。在本文中,我们证明了上述所有优化问题都是np困难的,并提出了新的贪心算法来解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NP-Hard Problems of Learning from Examples
As designing practical algorithms of learning from examples, one has to deal with some optimization problems. The major optimization problems are: the smallest feature subset selection, the smallest decision tree induction, and the smallest k-DNF induction. In this paper, we show that all these optimization problems listed as above are NP-hard, and we present new greedy algorithms for solving these problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信