基于激光特征的多机器人SLAM

S. R. U. N. Jafri, Zhao Li, A. A. Chandio, R. Chellali
{"title":"基于激光特征的多机器人SLAM","authors":"S. R. U. N. Jafri, Zhao Li, A. A. Chandio, R. Chellali","doi":"10.1109/ICARCV.2012.6485296","DOIUrl":null,"url":null,"abstract":"This paper presents multi-robot simultaneous localization and mapping (SLAM) framework for a team of robots with unknown initial poses. The proposed solution is using feature based Rao-Blackwellised particle filter (RBPF) SLAM for each robot working in an unknown environment equipped only with 2D range sensor and communication module. To represent the environment in compact form, line and corner features (or point features) are used. By sharing and comparing distinct feature based maps of each robot, a global map with known poses is formed without any physical meeting among the robots. This approach can easily applicable to the distributed or centralized robotic systems with ease of data handling and reduced computational cost.","PeriodicalId":441236,"journal":{"name":"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Laser only feature based multi robot SLAM\",\"authors\":\"S. R. U. N. Jafri, Zhao Li, A. A. Chandio, R. Chellali\",\"doi\":\"10.1109/ICARCV.2012.6485296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents multi-robot simultaneous localization and mapping (SLAM) framework for a team of robots with unknown initial poses. The proposed solution is using feature based Rao-Blackwellised particle filter (RBPF) SLAM for each robot working in an unknown environment equipped only with 2D range sensor and communication module. To represent the environment in compact form, line and corner features (or point features) are used. By sharing and comparing distinct feature based maps of each robot, a global map with known poses is formed without any physical meeting among the robots. This approach can easily applicable to the distributed or centralized robotic systems with ease of data handling and reduced computational cost.\",\"PeriodicalId\":441236,\"journal\":{\"name\":\"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCV.2012.6485296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2012.6485296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

针对一组初始姿态未知的机器人,提出了一种多机器人同步定位与映射(SLAM)框架。提出的解决方案是对每个在未知环境中工作的机器人使用基于特征的rao - blackwell化粒子滤波(RBPF) SLAM,仅配备2D距离传感器和通信模块。为了以紧凑的形式表示环境,使用线和角特征(或点特征)。通过共享和比较每个机器人的不同特征地图,在机器人之间没有任何物理接触的情况下,形成具有已知姿态的全局地图。该方法可以很容易地应用于分布式或集中式机器人系统,数据处理方便,计算成本低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laser only feature based multi robot SLAM
This paper presents multi-robot simultaneous localization and mapping (SLAM) framework for a team of robots with unknown initial poses. The proposed solution is using feature based Rao-Blackwellised particle filter (RBPF) SLAM for each robot working in an unknown environment equipped only with 2D range sensor and communication module. To represent the environment in compact form, line and corner features (or point features) are used. By sharing and comparing distinct feature based maps of each robot, a global map with known poses is formed without any physical meeting among the robots. This approach can easily applicable to the distributed or centralized robotic systems with ease of data handling and reduced computational cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信