搅拌摩擦焊接仿真的多物理场模型

D. Mackenzie, Hongjun Li, R. Hamilton
{"title":"搅拌摩擦焊接仿真的多物理场模型","authors":"D. Mackenzie, Hongjun Li, R. Hamilton","doi":"10.59972/fkwes73g","DOIUrl":null,"url":null,"abstract":"Friction stir welding (FSW) is a solid-state welding technology for joining a range of metals and alloys. The FSW joining process involves several coupled non-linear phenomena including; frictional heating, large plastic deformation, material transportation and dissipative heating. Numerical simulation of the process may include some or all of these physical processes, depending on the objective of the analysis. This paper gives an overview of two continuum solid mechanics FSW simulation models of differing complexity. The first model is a simplified ANSYS thermo-mechanical finite element model with an externally applied heat source simulating frictional and dissipative heating. The model can be used to quickly evaluate temperature, stress and deformation of the welded plate for a specified heat input. The second model is an ABAQUS/EXPLICIT Arbitrary Lagrangian-Eulerian (ALE) model of the complete FSW process: plunge, dwell, travel and withdraw. The model simulates coupled frictional heating, plastic dissipation, transient heat transfer and solid-state material flow. The results obtained for transient temperature distribution, material flow, residual stress and strain, etc. are found to be consistent with experimental observations.","PeriodicalId":183819,"journal":{"name":"NAFEMS International Journal of CFD Case Studies","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-physics Models for Friction Stir Welding Simulation\",\"authors\":\"D. Mackenzie, Hongjun Li, R. Hamilton\",\"doi\":\"10.59972/fkwes73g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Friction stir welding (FSW) is a solid-state welding technology for joining a range of metals and alloys. The FSW joining process involves several coupled non-linear phenomena including; frictional heating, large plastic deformation, material transportation and dissipative heating. Numerical simulation of the process may include some or all of these physical processes, depending on the objective of the analysis. This paper gives an overview of two continuum solid mechanics FSW simulation models of differing complexity. The first model is a simplified ANSYS thermo-mechanical finite element model with an externally applied heat source simulating frictional and dissipative heating. The model can be used to quickly evaluate temperature, stress and deformation of the welded plate for a specified heat input. The second model is an ABAQUS/EXPLICIT Arbitrary Lagrangian-Eulerian (ALE) model of the complete FSW process: plunge, dwell, travel and withdraw. The model simulates coupled frictional heating, plastic dissipation, transient heat transfer and solid-state material flow. The results obtained for transient temperature distribution, material flow, residual stress and strain, etc. are found to be consistent with experimental observations.\",\"PeriodicalId\":183819,\"journal\":{\"name\":\"NAFEMS International Journal of CFD Case Studies\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAFEMS International Journal of CFD Case Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59972/fkwes73g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFEMS International Journal of CFD Case Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59972/fkwes73g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

搅拌摩擦焊(FSW)是一种用于连接各种金属和合金的固态焊接技术。FSW连接过程涉及几个耦合的非线性现象,包括:摩擦加热,大塑性变形,物料输送和耗散加热。过程的数值模拟可以包括部分或全部这些物理过程,这取决于分析的目的。本文综述了两种不同复杂程度的连续介质固体力学FSW仿真模型。第一个模型是一个简化的ANSYS热力学有限元模型,采用外源热源模拟摩擦和耗散加热。该模型可用于快速计算特定热输入下焊接板的温度、应力和变形。第二个模型是一个ABAQUS/EXPLICIT任意拉格朗日-欧拉(ALE)模型,该模型描述了整个FSW过程:跌落、停留、移动和退出。该模型模拟了摩擦加热、塑性耗散、瞬态传热和固态物质流动的耦合过程。得到的瞬态温度分布、材料流动、残余应力和应变等结果与实验观察结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-physics Models for Friction Stir Welding Simulation
Friction stir welding (FSW) is a solid-state welding technology for joining a range of metals and alloys. The FSW joining process involves several coupled non-linear phenomena including; frictional heating, large plastic deformation, material transportation and dissipative heating. Numerical simulation of the process may include some or all of these physical processes, depending on the objective of the analysis. This paper gives an overview of two continuum solid mechanics FSW simulation models of differing complexity. The first model is a simplified ANSYS thermo-mechanical finite element model with an externally applied heat source simulating frictional and dissipative heating. The model can be used to quickly evaluate temperature, stress and deformation of the welded plate for a specified heat input. The second model is an ABAQUS/EXPLICIT Arbitrary Lagrangian-Eulerian (ALE) model of the complete FSW process: plunge, dwell, travel and withdraw. The model simulates coupled frictional heating, plastic dissipation, transient heat transfer and solid-state material flow. The results obtained for transient temperature distribution, material flow, residual stress and strain, etc. are found to be consistent with experimental observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信