一种新的自适应Nyström近似

Lingyan Sheng, Antonio Ortega
{"title":"一种新的自适应Nyström近似","authors":"Lingyan Sheng, Antonio Ortega","doi":"10.1109/MLSP.2012.6349777","DOIUrl":null,"url":null,"abstract":"We propose a novel perspective on the Nyström approximation method. Sampling the columns of the kernel matrix can be interpreted as projecting the data onto the subspace spanned by the corresponding columns. Thus, the quality of Nyström approximation can be quantified by the distance between the subspace spanned by the sampled columns and the subspace spanned by the data mapped to the eigenvectors corresponding to the top eigenvalues of the kernel matrix. Based on this interpretation, we design a novel adaptive Nyström approximation algorithm, BoostNyström. BoostNyström is efficient in terms of both time and space complexity. Experiments on benchmark data sets show that BoostNyström is more effective than the state-of-art algorithms.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel adaptive Nyström approximation\",\"authors\":\"Lingyan Sheng, Antonio Ortega\",\"doi\":\"10.1109/MLSP.2012.6349777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel perspective on the Nyström approximation method. Sampling the columns of the kernel matrix can be interpreted as projecting the data onto the subspace spanned by the corresponding columns. Thus, the quality of Nyström approximation can be quantified by the distance between the subspace spanned by the sampled columns and the subspace spanned by the data mapped to the eigenvectors corresponding to the top eigenvalues of the kernel matrix. Based on this interpretation, we design a novel adaptive Nyström approximation algorithm, BoostNyström. BoostNyström is efficient in terms of both time and space complexity. Experiments on benchmark data sets show that BoostNyström is more effective than the state-of-art algorithms.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了Nyström近似方法的新视角。对核矩阵的列进行采样可以解释为将数据投影到相应列所张成的子空间上。因此,Nyström近似的质量可以通过采样列所张成的子空间与映射到核矩阵的顶特征值对应的特征向量的数据所张成的子空间之间的距离来量化。基于这种解释,我们设计了一种新的自适应Nyström近似算法BoostNyström。BoostNyström在时间和空间复杂性方面都是高效的。在基准数据集上的实验表明,BoostNyström比目前的算法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel adaptive Nyström approximation
We propose a novel perspective on the Nyström approximation method. Sampling the columns of the kernel matrix can be interpreted as projecting the data onto the subspace spanned by the corresponding columns. Thus, the quality of Nyström approximation can be quantified by the distance between the subspace spanned by the sampled columns and the subspace spanned by the data mapped to the eigenvectors corresponding to the top eigenvalues of the kernel matrix. Based on this interpretation, we design a novel adaptive Nyström approximation algorithm, BoostNyström. BoostNyström is efficient in terms of both time and space complexity. Experiments on benchmark data sets show that BoostNyström is more effective than the state-of-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信