用于分类的马尔可夫随机场结构直接和残差矢量量化

S. A. Ali Khan, C. Barnes
{"title":"用于分类的马尔可夫随机场结构直接和残差矢量量化","authors":"S. A. Ali Khan, C. Barnes","doi":"10.1109/FUTURETECH.2010.5482752","DOIUrl":null,"url":null,"abstract":"Multistage RVQs with optimal direct sum decoder codebooks have been successfully designed and implemented for data compression. The same design concept has yielded good results in the application of image-content classification and has also provided an effective platform to perform image driven data mining (IDDM). To make it computationally feasible, the current design methods entail encoder codebook designed in a sequential but suboptimal manner. Based on the sub-optimal codebook design approach, the sequential search path is greedy based on a stage wise nearest-neighborhood strategy instead of a direct sum nearest-neighborhood requirement. Markov random field (MRF) provides a suitable framework to exploit the structure of multistage residual vector quantizers with optimal direct-sum direct sum decoder codebooks combined with sequential-search encoders to achieve optimized classification in the maximum aposteriori sense (MAP).","PeriodicalId":380192,"journal":{"name":"2010 5th International Conference on Future Information Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Markov Random Field-Structured Direct Sum Residual Vector Quantization for Classification\",\"authors\":\"S. A. Ali Khan, C. Barnes\",\"doi\":\"10.1109/FUTURETECH.2010.5482752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multistage RVQs with optimal direct sum decoder codebooks have been successfully designed and implemented for data compression. The same design concept has yielded good results in the application of image-content classification and has also provided an effective platform to perform image driven data mining (IDDM). To make it computationally feasible, the current design methods entail encoder codebook designed in a sequential but suboptimal manner. Based on the sub-optimal codebook design approach, the sequential search path is greedy based on a stage wise nearest-neighborhood strategy instead of a direct sum nearest-neighborhood requirement. Markov random field (MRF) provides a suitable framework to exploit the structure of multistage residual vector quantizers with optimal direct-sum direct sum decoder codebooks combined with sequential-search encoders to achieve optimized classification in the maximum aposteriori sense (MAP).\",\"PeriodicalId\":380192,\"journal\":{\"name\":\"2010 5th International Conference on Future Information Technology\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 5th International Conference on Future Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUTURETECH.2010.5482752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th International Conference on Future Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUTURETECH.2010.5482752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

已成功设计并实现了具有最优直和译码本的多级rvq数据压缩算法。同样的设计理念在图像内容分类的应用中取得了良好的效果,也为图像驱动数据挖掘(IDDM)提供了一个有效的平台。为了使其在计算上可行,目前的设计方法需要以顺序但次优的方式设计编码器码本。基于次优码本设计方法,序列搜索路径是贪婪的,基于阶段明智的最近邻策略,而不是直接求和的最近邻要求。马尔可夫随机场(MRF)提供了一个合适的框架来利用多级残差矢量量化器的结构,将最优直接和直接和译码器码本与顺序搜索编码器相结合,以实现最大后验意义(MAP)下的最优分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Markov Random Field-Structured Direct Sum Residual Vector Quantization for Classification
Multistage RVQs with optimal direct sum decoder codebooks have been successfully designed and implemented for data compression. The same design concept has yielded good results in the application of image-content classification and has also provided an effective platform to perform image driven data mining (IDDM). To make it computationally feasible, the current design methods entail encoder codebook designed in a sequential but suboptimal manner. Based on the sub-optimal codebook design approach, the sequential search path is greedy based on a stage wise nearest-neighborhood strategy instead of a direct sum nearest-neighborhood requirement. Markov random field (MRF) provides a suitable framework to exploit the structure of multistage residual vector quantizers with optimal direct-sum direct sum decoder codebooks combined with sequential-search encoders to achieve optimized classification in the maximum aposteriori sense (MAP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信