根据系统执行跟踪自动构造数据流模型

M. Peiris, M. Hasan, James H. Hill
{"title":"根据系统执行跟踪自动构造数据流模型","authors":"M. Peiris, M. Hasan, James H. Hill","doi":"10.1109/ISORC.2013.6913203","DOIUrl":null,"url":null,"abstract":"This paper presents a method and tool named the Dataflow Model Auto-Constructor (DMAC). DMAC uses frequent-sequence mining and Dempster-Shafer theory to mine a system execution trace and reconstruct its corresponding dataflow model. Distributed system testers then use the resultant dataflow model to analyze performance properties (e.g., end-to-end response time, throughput, and service time) captured in the system execution trace. Results from applying DMAC to different case studies show that DMAC can reconstruct dataflow models that cover at most 94% of the events in the original system execution trace. Likewise, more than 2 sources of evidence are needed to reconstruct dataflow models for systems with multiple execution contexts.","PeriodicalId":330873,"journal":{"name":"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Auto-constructing dataflow models from system execution traces\",\"authors\":\"M. Peiris, M. Hasan, James H. Hill\",\"doi\":\"10.1109/ISORC.2013.6913203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method and tool named the Dataflow Model Auto-Constructor (DMAC). DMAC uses frequent-sequence mining and Dempster-Shafer theory to mine a system execution trace and reconstruct its corresponding dataflow model. Distributed system testers then use the resultant dataflow model to analyze performance properties (e.g., end-to-end response time, throughput, and service time) captured in the system execution trace. Results from applying DMAC to different case studies show that DMAC can reconstruct dataflow models that cover at most 94% of the events in the original system execution trace. Likewise, more than 2 sources of evidence are needed to reconstruct dataflow models for systems with multiple execution contexts.\",\"PeriodicalId\":330873,\"journal\":{\"name\":\"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISORC.2013.6913203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC.2013.6913203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种数据流模型自动构造函数(DMAC)的方法和工具。DMAC利用频率序列挖掘和Dempster-Shafer理论挖掘系统执行轨迹,重构相应的数据流模型。然后,分布式系统测试人员使用结果数据流模型来分析在系统执行跟踪中捕获的性能属性(例如,端到端响应时间、吞吐量和服务时间)。将DMAC应用于不同案例研究的结果表明,DMAC可以重建最多覆盖原始系统执行跟踪中94%事件的数据流模型。同样,对于具有多个执行上下文的系统,重构数据流模型需要两个以上的证据来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auto-constructing dataflow models from system execution traces
This paper presents a method and tool named the Dataflow Model Auto-Constructor (DMAC). DMAC uses frequent-sequence mining and Dempster-Shafer theory to mine a system execution trace and reconstruct its corresponding dataflow model. Distributed system testers then use the resultant dataflow model to analyze performance properties (e.g., end-to-end response time, throughput, and service time) captured in the system execution trace. Results from applying DMAC to different case studies show that DMAC can reconstruct dataflow models that cover at most 94% of the events in the original system execution trace. Likewise, more than 2 sources of evidence are needed to reconstruct dataflow models for systems with multiple execution contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信