Sierpiński r-一致超图的乘积

Mark Budden, Josh Hiller
{"title":"Sierpiński r-一致超图的乘积","authors":"Mark Budden, Josh Hiller","doi":"10.26493/2590-9770.1402.D50","DOIUrl":null,"url":null,"abstract":"If H1 and H2 are r-uniform hypergraphs and f is a function from the set of all (r − 1)-element subsets of V(H1) into V(H2), then the Sierpinski product H1⊗fH2 is defined to have vertex set V(H1) × V(H2) and hyperedges falling into two classes: (g, h1)(g, h2)⋯(g, hr), such that g ∈ V(H1) and h1h2⋯hr ∈ E(H2),and (g1, f({g2, g3, …, gr}))(g2, f({g1, g3, …, gr}))⋯(gr, f({g1, g2, …, gr − 1})),such that g1g2⋯gr ∈ E(H1). We develop the basic structure possessed by this product and offer proofs of numerous extremal properties involving connectivity, clique numbers, and strong chromatic numbers.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sierpiński products of r-uniform hypergraphs\",\"authors\":\"Mark Budden, Josh Hiller\",\"doi\":\"10.26493/2590-9770.1402.D50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If H1 and H2 are r-uniform hypergraphs and f is a function from the set of all (r − 1)-element subsets of V(H1) into V(H2), then the Sierpinski product H1⊗fH2 is defined to have vertex set V(H1) × V(H2) and hyperedges falling into two classes: (g, h1)(g, h2)⋯(g, hr), such that g ∈ V(H1) and h1h2⋯hr ∈ E(H2),and (g1, f({g2, g3, …, gr}))(g2, f({g1, g3, …, gr}))⋯(gr, f({g1, g2, …, gr − 1})),such that g1g2⋯gr ∈ E(H1). We develop the basic structure possessed by this product and offer proofs of numerous extremal properties involving connectivity, clique numbers, and strong chromatic numbers.\",\"PeriodicalId\":236892,\"journal\":{\"name\":\"Art Discret. Appl. Math.\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art Discret. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1402.D50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1402.D50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果H1和H2是r-一致超图,f是V(H1)到V(H2)的所有(r−1)元素子集集合的函数,则Sierpinski积H1⊗fH2定义为具有顶点集V(H1) × V(H2)和超边分为两类:(g, H1) (g, H2)⋯(g, hr),使得g∈V(H1)和h1h2⋯hr∈E(H2),以及(g1, f({g1, g3,…,gr}))(g2, f({g1, g3,…,gr}))⋯(gr, f({g1, g2,…,gr−1})),使得g1g2⋯gr∈E(H1)。我们开发了该产品所具有的基本结构,并提供了涉及连通性,团数和强色数的许多极值性质的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sierpiński products of r-uniform hypergraphs
If H1 and H2 are r-uniform hypergraphs and f is a function from the set of all (r − 1)-element subsets of V(H1) into V(H2), then the Sierpinski product H1⊗fH2 is defined to have vertex set V(H1) × V(H2) and hyperedges falling into two classes: (g, h1)(g, h2)⋯(g, hr), such that g ∈ V(H1) and h1h2⋯hr ∈ E(H2),and (g1, f({g2, g3, …, gr}))(g2, f({g1, g3, …, gr}))⋯(gr, f({g1, g2, …, gr − 1})),such that g1g2⋯gr ∈ E(H1). We develop the basic structure possessed by this product and offer proofs of numerous extremal properties involving connectivity, clique numbers, and strong chromatic numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信