基于bert的自动ICD编码:限制与机遇

Damian Pascual, Sandro Luck, Roger Wattenhofer
{"title":"基于bert的自动ICD编码:限制与机遇","authors":"Damian Pascual, Sandro Luck, Roger Wattenhofer","doi":"10.18653/v1/2021.bionlp-1.6","DOIUrl":null,"url":null,"abstract":"Automatic ICD coding is the task of assigning codes from the International Classification of Diseases (ICD) to medical notes. These codes describe the state of the patient and have multiple applications, e.g., computer-assisted diagnosis or epidemiological studies. ICD coding is a challenging task due to the complexity and length of medical notes. Unlike the general trend in language processing, no transformer model has been reported to reach high performance on this task. Here, we investigate in detail ICD coding using PubMedBERT, a state-of-the-art transformer model for biomedical language understanding. We find that the difficulty of fine-tuning the model on long pieces of text is the main limitation for BERT-based models on ICD coding. We run extensive experiments and show that despite the gap with current state-of-the-art, pretrained transformers can reach competitive performance using relatively small portions of text. We point at better methods to aggregate information from long texts as the main need for improving BERT-based ICD coding.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"232 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Towards BERT-based Automatic ICD Coding: Limitations and Opportunities\",\"authors\":\"Damian Pascual, Sandro Luck, Roger Wattenhofer\",\"doi\":\"10.18653/v1/2021.bionlp-1.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic ICD coding is the task of assigning codes from the International Classification of Diseases (ICD) to medical notes. These codes describe the state of the patient and have multiple applications, e.g., computer-assisted diagnosis or epidemiological studies. ICD coding is a challenging task due to the complexity and length of medical notes. Unlike the general trend in language processing, no transformer model has been reported to reach high performance on this task. Here, we investigate in detail ICD coding using PubMedBERT, a state-of-the-art transformer model for biomedical language understanding. We find that the difficulty of fine-tuning the model on long pieces of text is the main limitation for BERT-based models on ICD coding. We run extensive experiments and show that despite the gap with current state-of-the-art, pretrained transformers can reach competitive performance using relatively small portions of text. We point at better methods to aggregate information from long texts as the main need for improving BERT-based ICD coding.\",\"PeriodicalId\":200974,\"journal\":{\"name\":\"Workshop on Biomedical Natural Language Processing\",\"volume\":\"232 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Biomedical Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2021.bionlp-1.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.bionlp-1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

国际疾病分类(ICD)自动编码是将国际疾病分类(ICD)的代码分配到医疗记录的任务。这些代码描述病人的状态,并有多种应用,例如,计算机辅助诊断或流行病学研究。由于医疗记录的复杂性和长度,ICD编码是一项具有挑战性的任务。与语言处理的一般趋势不同,没有任何转换器模型在此任务中达到高性能。在这里,我们使用PubMedBERT详细研究ICD编码,PubMedBERT是一种用于生物医学语言理解的最先进的转换模型。我们发现,在长文本上对模型进行微调的困难是基于bert的ICD编码模型的主要限制。我们进行了大量的实验,并表明尽管与当前最先进的技术存在差距,但预训练的变形器可以使用相对较小的文本部分达到具有竞争力的性能。我们指出,改进基于bert的ICD编码需要更好的方法来从长文本中收集信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards BERT-based Automatic ICD Coding: Limitations and Opportunities
Automatic ICD coding is the task of assigning codes from the International Classification of Diseases (ICD) to medical notes. These codes describe the state of the patient and have multiple applications, e.g., computer-assisted diagnosis or epidemiological studies. ICD coding is a challenging task due to the complexity and length of medical notes. Unlike the general trend in language processing, no transformer model has been reported to reach high performance on this task. Here, we investigate in detail ICD coding using PubMedBERT, a state-of-the-art transformer model for biomedical language understanding. We find that the difficulty of fine-tuning the model on long pieces of text is the main limitation for BERT-based models on ICD coding. We run extensive experiments and show that despite the gap with current state-of-the-art, pretrained transformers can reach competitive performance using relatively small portions of text. We point at better methods to aggregate information from long texts as the main need for improving BERT-based ICD coding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信