基于混合效应半参数回归的纵剖面分类

C. Pfeifer
{"title":"基于混合效应半参数回归的纵剖面分类","authors":"C. Pfeifer","doi":"10.1191/1471082X04st082oa","DOIUrl":null,"url":null,"abstract":"A semi-parametric model is applied in order to model counts of letters for the federal Austrian postal system. Random coefficients are introduced into the splined variable of the semi-parametric regression model to describe heterogeneity of the temporal effect. Pfeifer and Seeber propose estimates for random coefficients to classify post offices by a hierarchical cluster algorithm. In this article, we apply two model based approaches for classification. It turns out here that both the hierarchical and the model based approach are useful for explorative cluster analysis.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Classification of longitudinal profiles based on semi-parametric regression with mixed effects\",\"authors\":\"C. Pfeifer\",\"doi\":\"10.1191/1471082X04st082oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A semi-parametric model is applied in order to model counts of letters for the federal Austrian postal system. Random coefficients are introduced into the splined variable of the semi-parametric regression model to describe heterogeneity of the temporal effect. Pfeifer and Seeber propose estimates for random coefficients to classify post offices by a hierarchical cluster algorithm. In this article, we apply two model based approaches for classification. It turns out here that both the hierarchical and the model based approach are useful for explorative cluster analysis.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082X04st082oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X04st082oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

为了模拟奥地利联邦邮政系统的信件数量,应用了半参数模型。在半参数回归模型的样条变量中引入随机系数来描述时间效应的异质性。Pfeifer和Seeber提出了用分层聚类算法估计随机系数来对邮局进行分类。在本文中,我们应用了两种基于模型的分类方法。结果表明,分层方法和基于模型的方法对于探索性聚类分析都是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of longitudinal profiles based on semi-parametric regression with mixed effects
A semi-parametric model is applied in order to model counts of letters for the federal Austrian postal system. Random coefficients are introduced into the splined variable of the semi-parametric regression model to describe heterogeneity of the temporal effect. Pfeifer and Seeber propose estimates for random coefficients to classify post offices by a hierarchical cluster algorithm. In this article, we apply two model based approaches for classification. It turns out here that both the hierarchical and the model based approach are useful for explorative cluster analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信