跨语言信息检索模型分析

Das Ujjwal, Prakhar Rastogi, S. Siddhartha
{"title":"跨语言信息检索模型分析","authors":"Das Ujjwal, Prakhar Rastogi, S. Siddhartha","doi":"10.1109/ISCO.2016.7727028","DOIUrl":null,"url":null,"abstract":"There are several information retrieval systems widely in use today. There are systems based on probabilistic models of relevance, language modeling and those based on DFR model. Though most of these can be applied in a cross-lingual environment, the retrieval efficiency varies widely in such a setting. In this paper we evaluate the performance of the IR models using different empirical parameters using English-Hindi corpus. We analyze the dependency of different models on the value of the empirical parameter and present the results. We observe that language modeling gives comparably better results even when relevance feedback is not available.","PeriodicalId":320699,"journal":{"name":"2016 10th International Conference on Intelligent Systems and Control (ISCO)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis of retrieval models for cross language information retrieval\",\"authors\":\"Das Ujjwal, Prakhar Rastogi, S. Siddhartha\",\"doi\":\"10.1109/ISCO.2016.7727028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are several information retrieval systems widely in use today. There are systems based on probabilistic models of relevance, language modeling and those based on DFR model. Though most of these can be applied in a cross-lingual environment, the retrieval efficiency varies widely in such a setting. In this paper we evaluate the performance of the IR models using different empirical parameters using English-Hindi corpus. We analyze the dependency of different models on the value of the empirical parameter and present the results. We observe that language modeling gives comparably better results even when relevance feedback is not available.\",\"PeriodicalId\":320699,\"journal\":{\"name\":\"2016 10th International Conference on Intelligent Systems and Control (ISCO)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 10th International Conference on Intelligent Systems and Control (ISCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCO.2016.7727028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Intelligent Systems and Control (ISCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCO.2016.7727028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

目前有几种广泛使用的信息检索系统。有基于关联概率模型的系统、基于语言建模的系统和基于DFR模型的系统。虽然大多数方法都可以应用于跨语言环境,但在这种环境下,检索效率差异很大。在本文中,我们使用英语-印地语语料库使用不同的经验参数来评估IR模型的性能。我们分析了不同模型对经验参数值的依赖关系,并给出了结果。我们观察到,即使在相关性反馈不可用的情况下,语言建模也给出了相对更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of retrieval models for cross language information retrieval
There are several information retrieval systems widely in use today. There are systems based on probabilistic models of relevance, language modeling and those based on DFR model. Though most of these can be applied in a cross-lingual environment, the retrieval efficiency varies widely in such a setting. In this paper we evaluate the performance of the IR models using different empirical parameters using English-Hindi corpus. We analyze the dependency of different models on the value of the empirical parameter and present the results. We observe that language modeling gives comparably better results even when relevance feedback is not available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信