调和序列论与有限状态最优论

Sophie Hao
{"title":"调和序列论与有限状态最优论","authors":"Sophie Hao","doi":"10.18653/v1/W17-4003","DOIUrl":null,"url":null,"abstract":"This paper presents a new finite-state model of Optimality Theory (OT). In this model, two assumptions are imposed on the OT framework. Firstly, I adopt the Harmonic Serialism version of OT, in which output forms are derived from input forms via a series of incremental changes. Secondly, constraints are assumed to be strictly local in the sense that each markedness constraint specifies a set of banned sequences, each occurrence of which is penalized. I show that these two assumptions suffice to reduce the power of OT to rational relations.","PeriodicalId":286427,"journal":{"name":"Finite-State Methods and Natural Language Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Harmonic Serialism and Finite-State Optimality Theory\",\"authors\":\"Sophie Hao\",\"doi\":\"10.18653/v1/W17-4003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new finite-state model of Optimality Theory (OT). In this model, two assumptions are imposed on the OT framework. Firstly, I adopt the Harmonic Serialism version of OT, in which output forms are derived from input forms via a series of incremental changes. Secondly, constraints are assumed to be strictly local in the sense that each markedness constraint specifies a set of banned sequences, each occurrence of which is penalized. I show that these two assumptions suffice to reduce the power of OT to rational relations.\",\"PeriodicalId\":286427,\"journal\":{\"name\":\"Finite-State Methods and Natural Language Processing\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite-State Methods and Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W17-4003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite-State Methods and Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-4003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的最优性理论有限状态模型。在这个模型中,对OT框架施加了两个假设。首先,我采用了OT的调和序列主义版本,其中输出形式是通过一系列增量变化从输入形式衍生出来的。其次,假设约束是严格局部的,即每个标记约束指定一组被禁止的序列,这些序列的每次出现都会受到惩罚。我证明这两个假设足以将OT的力量降低到理性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonic Serialism and Finite-State Optimality Theory
This paper presents a new finite-state model of Optimality Theory (OT). In this model, two assumptions are imposed on the OT framework. Firstly, I adopt the Harmonic Serialism version of OT, in which output forms are derived from input forms via a series of incremental changes. Secondly, constraints are assumed to be strictly local in the sense that each markedness constraint specifies a set of banned sequences, each occurrence of which is penalized. I show that these two assumptions suffice to reduce the power of OT to rational relations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信