利用递归神经网络估计Wi-Fi站点的服务质量

H. Moura, Matheus Nunes, G. M. Júnior, D. Macedo, L. H. A. Correia
{"title":"利用递归神经网络估计Wi-Fi站点的服务质量","authors":"H. Moura, Matheus Nunes, G. M. Júnior, D. Macedo, L. H. A. Correia","doi":"10.1109/PIMRC.2019.8904273","DOIUrl":null,"url":null,"abstract":"Wireless networks are the most common way to access the Internet, with more than 10 billion Wi-Fi devices already sold. Wireless connections suffer from problems related to spectrum overuse, such as transmission errors and loss of information. Intelligent control systems can be used for network management and to improve Quality of Service (QoS). However, the first step towards such systems is a way to correlate current Wi-Fi readings to a QoS value. This work proposes a model using Recurrent Neural Networks (RNN) to infer such relation, based on real Wi-Fi data, and compares two RNN types: Gated Recurrent Unit (GRU) and Long Short Term Memory (LSTM). The model predicts four network metrics: throughput, loss, delay, and jitter, based only in traffic data obtained at the AP. The average Root Mean Square Error is of the order of 10−2 for throughput, 10−4 for delay, and 10−5 for jitter and packet loss using both methods.","PeriodicalId":412182,"journal":{"name":"2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Estimating Quality of Service on Wi-Fi Stations Using Recurrent Neural Networks\",\"authors\":\"H. Moura, Matheus Nunes, G. M. Júnior, D. Macedo, L. H. A. Correia\",\"doi\":\"10.1109/PIMRC.2019.8904273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless networks are the most common way to access the Internet, with more than 10 billion Wi-Fi devices already sold. Wireless connections suffer from problems related to spectrum overuse, such as transmission errors and loss of information. Intelligent control systems can be used for network management and to improve Quality of Service (QoS). However, the first step towards such systems is a way to correlate current Wi-Fi readings to a QoS value. This work proposes a model using Recurrent Neural Networks (RNN) to infer such relation, based on real Wi-Fi data, and compares two RNN types: Gated Recurrent Unit (GRU) and Long Short Term Memory (LSTM). The model predicts four network metrics: throughput, loss, delay, and jitter, based only in traffic data obtained at the AP. The average Root Mean Square Error is of the order of 10−2 for throughput, 10−4 for delay, and 10−5 for jitter and packet loss using both methods.\",\"PeriodicalId\":412182,\"journal\":{\"name\":\"2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRC.2019.8904273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2019.8904273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

无线网络是接入互联网最常见的方式,目前已售出超过100亿部Wi-Fi设备。无线连接受到与频谱过度使用有关的问题的困扰,例如传输错误和信息丢失。智能控制系统可用于网络管理和提高服务质量(QoS)。然而,迈向这种系统的第一步是将当前Wi-Fi读数与QoS值相关联。这项工作提出了一个基于真实Wi-Fi数据的循环神经网络(RNN)模型来推断这种关系,并比较了两种RNN类型:门控循环单元(GRU)和长短期记忆(LSTM)。该模型仅基于在AP获得的流量数据预测四个网络指标:吞吐量、丢失、延迟和抖动。使用两种方法的平均均方根误差为吞吐量10−2,延迟10−4,抖动和丢包10−5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Quality of Service on Wi-Fi Stations Using Recurrent Neural Networks
Wireless networks are the most common way to access the Internet, with more than 10 billion Wi-Fi devices already sold. Wireless connections suffer from problems related to spectrum overuse, such as transmission errors and loss of information. Intelligent control systems can be used for network management and to improve Quality of Service (QoS). However, the first step towards such systems is a way to correlate current Wi-Fi readings to a QoS value. This work proposes a model using Recurrent Neural Networks (RNN) to infer such relation, based on real Wi-Fi data, and compares two RNN types: Gated Recurrent Unit (GRU) and Long Short Term Memory (LSTM). The model predicts four network metrics: throughput, loss, delay, and jitter, based only in traffic data obtained at the AP. The average Root Mean Square Error is of the order of 10−2 for throughput, 10−4 for delay, and 10−5 for jitter and packet loss using both methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信