多核/多核架构中接近中心性的硬件/软件矢量化

Ahmet Erdem Sarıyüce, Erik Saule, K. Kaya, Ümit V. Çatalyürek
{"title":"多核/多核架构中接近中心性的硬件/软件矢量化","authors":"Ahmet Erdem Sarıyüce, Erik Saule, K. Kaya, Ümit V. Çatalyürek","doi":"10.1109/IPDPSW.2014.156","DOIUrl":null,"url":null,"abstract":"Centrality metrics have shown to be highly correlated with the importance and loads of the nodes in a network. Given the scale of today's social networks, it is essential to use efficient algorithms and high performance computing techniques for their fast computation. In this work, we exploit hardware and software vectorization in combination with finegrain parallelization to compute the closeness centrality values. The proposed vectorization approach enables us to do concurrent breadth-first search operations and significantly increases the performance. We provide a comparison of different vectorization schemes and experimentally evaluate our contributions with respect to the existing parallel CPU-based solutions on cutting-edge hardware. Our implementations achieve to be 11 times faster than the state-of-the-art implementation for a graph with 234 million edges. The proposed techniques are beneficial to show how the vectorization can be efficiently utilized to execute other graph kernels that require multiple traversals over a large-scale network on cutting-edge architectures.","PeriodicalId":153864,"journal":{"name":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Hardware/Software Vectorization for Closeness Centrality on Multi-/Many-Core Architectures\",\"authors\":\"Ahmet Erdem Sarıyüce, Erik Saule, K. Kaya, Ümit V. Çatalyürek\",\"doi\":\"10.1109/IPDPSW.2014.156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Centrality metrics have shown to be highly correlated with the importance and loads of the nodes in a network. Given the scale of today's social networks, it is essential to use efficient algorithms and high performance computing techniques for their fast computation. In this work, we exploit hardware and software vectorization in combination with finegrain parallelization to compute the closeness centrality values. The proposed vectorization approach enables us to do concurrent breadth-first search operations and significantly increases the performance. We provide a comparison of different vectorization schemes and experimentally evaluate our contributions with respect to the existing parallel CPU-based solutions on cutting-edge hardware. Our implementations achieve to be 11 times faster than the state-of-the-art implementation for a graph with 234 million edges. The proposed techniques are beneficial to show how the vectorization can be efficiently utilized to execute other graph kernels that require multiple traversals over a large-scale network on cutting-edge architectures.\",\"PeriodicalId\":153864,\"journal\":{\"name\":\"2014 IEEE International Parallel & Distributed Processing Symposium Workshops\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Parallel & Distributed Processing Symposium Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2014.156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2014.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

中心性指标已被证明与网络中节点的重要性和负载高度相关。鉴于当今社会网络的规模,使用高效的算法和高性能的计算技术来实现其快速计算是必不可少的。在这项工作中,我们利用硬件和软件矢量化与细粒度并行化相结合来计算接近中心性值。所提出的矢量化方法使我们能够进行并行的广度优先搜索操作,并显著提高性能。我们提供了不同矢量化方案的比较,并通过实验评估了我们对现有的基于尖端硬件的并行cpu解决方案的贡献。对于一个有2.34亿个边的图,我们的实现比最先进的实现快11倍。所提出的技术有助于展示如何有效地利用矢量化来执行需要在尖端架构上的大规模网络上进行多次遍历的其他图核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardware/Software Vectorization for Closeness Centrality on Multi-/Many-Core Architectures
Centrality metrics have shown to be highly correlated with the importance and loads of the nodes in a network. Given the scale of today's social networks, it is essential to use efficient algorithms and high performance computing techniques for their fast computation. In this work, we exploit hardware and software vectorization in combination with finegrain parallelization to compute the closeness centrality values. The proposed vectorization approach enables us to do concurrent breadth-first search operations and significantly increases the performance. We provide a comparison of different vectorization schemes and experimentally evaluate our contributions with respect to the existing parallel CPU-based solutions on cutting-edge hardware. Our implementations achieve to be 11 times faster than the state-of-the-art implementation for a graph with 234 million edges. The proposed techniques are beneficial to show how the vectorization can be efficiently utilized to execute other graph kernels that require multiple traversals over a large-scale network on cutting-edge architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信