独特的蜻蜓关键特征采集与聚类优化算法

Nagaraju Devarakonda, S. Anandarao, Raviteja Kamarajugadda, Yingxu Wang
{"title":"独特的蜻蜓关键特征采集与聚类优化算法","authors":"Nagaraju Devarakonda, S. Anandarao, Raviteja Kamarajugadda, Yingxu Wang","doi":"10.1109/ICCICC46617.2019.9146092","DOIUrl":null,"url":null,"abstract":"In many applications, the feature selection plays an important role, as best feature can bring out the accurate results. The features selected must represent the entire dataset. Here we have considered “Sequential Forward Selection” for feature extraction and used refined dragonfly algorithm to approach and to migrate from the best and worst features respectively. We improvised the conventional dragonfly algorithm by adding the convergence and fitness functions. To access the accuracy of the algorithm we introduced the fitness function. This paper has discussed about the general hunting behaviour of the dragonfly and dragonfly algorithm (DA) with convergence and fitness functions. A comparative study was shown for the best search agent position between modified DA and traditional DA, at the same time test function values of refined dragonfly algorithm (RDA) is compared with whale optimization algorithm (WOA) and Tornadogenesis Optimization algorithm (TOA). We have evaluated refined DA on the 23 benchmark function corresponding values are shown in experiment.","PeriodicalId":294902,"journal":{"name":"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unique Dragonfly Optimization Algorithm for Harvesting and Clustering the Key Features\",\"authors\":\"Nagaraju Devarakonda, S. Anandarao, Raviteja Kamarajugadda, Yingxu Wang\",\"doi\":\"10.1109/ICCICC46617.2019.9146092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many applications, the feature selection plays an important role, as best feature can bring out the accurate results. The features selected must represent the entire dataset. Here we have considered “Sequential Forward Selection” for feature extraction and used refined dragonfly algorithm to approach and to migrate from the best and worst features respectively. We improvised the conventional dragonfly algorithm by adding the convergence and fitness functions. To access the accuracy of the algorithm we introduced the fitness function. This paper has discussed about the general hunting behaviour of the dragonfly and dragonfly algorithm (DA) with convergence and fitness functions. A comparative study was shown for the best search agent position between modified DA and traditional DA, at the same time test function values of refined dragonfly algorithm (RDA) is compared with whale optimization algorithm (WOA) and Tornadogenesis Optimization algorithm (TOA). We have evaluated refined DA on the 23 benchmark function corresponding values are shown in experiment.\",\"PeriodicalId\":294902,\"journal\":{\"name\":\"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCICC46617.2019.9146092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICC46617.2019.9146092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在许多应用中,特征选择起着重要的作用,因为最好的特征可以得到准确的结果。所选择的特征必须代表整个数据集。本文采用“顺序前向选择”的方法进行特征提取,采用改进的蜻蜓算法分别逼近和迁移最佳特征和最差特征。我们改进了传统的蜻蜓算法,增加了收敛和适应度函数。为了保证算法的准确性,我们引入了适应度函数。本文讨论了蜻蜓的一般捕食行为以及具有收敛性和适应度函数的蜻蜓算法。对比研究了改进DA与传统DA的最佳搜索agent位置,同时将改进蜻蜓算法(RDA)与鲸鱼优化算法(WOA)和龙卷风生成优化算法(TOA)的测试函数值进行了比较。我们在23个基准函数上对改进的DA进行了评估,实验结果显示了相应的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unique Dragonfly Optimization Algorithm for Harvesting and Clustering the Key Features
In many applications, the feature selection plays an important role, as best feature can bring out the accurate results. The features selected must represent the entire dataset. Here we have considered “Sequential Forward Selection” for feature extraction and used refined dragonfly algorithm to approach and to migrate from the best and worst features respectively. We improvised the conventional dragonfly algorithm by adding the convergence and fitness functions. To access the accuracy of the algorithm we introduced the fitness function. This paper has discussed about the general hunting behaviour of the dragonfly and dragonfly algorithm (DA) with convergence and fitness functions. A comparative study was shown for the best search agent position between modified DA and traditional DA, at the same time test function values of refined dragonfly algorithm (RDA) is compared with whale optimization algorithm (WOA) and Tornadogenesis Optimization algorithm (TOA). We have evaluated refined DA on the 23 benchmark function corresponding values are shown in experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信