集成铸造MIM电容器和OSAT扇出RDL用于高性能射频滤波器

Pao-Nan Lee, Yu-Chang Hsieh, Hung-Lun Lo, Chang-Ho Li, F. Huang, James Lin, Wei-Chu Hsu, Chen-Chao Wang
{"title":"集成铸造MIM电容器和OSAT扇出RDL用于高性能射频滤波器","authors":"Pao-Nan Lee, Yu-Chang Hsieh, Hung-Lun Lo, Chang-Ho Li, F. Huang, James Lin, Wei-Chu Hsu, Chen-Chao Wang","doi":"10.1109/ectc51906.2022.00211","DOIUrl":null,"url":null,"abstract":"5G communication has been widely implemented since year 2020, especially for FR1 sub-6GHz range. Band n77, n78 and n79 are three critical bands in the 5G FR1 because of higher frequency and much wider bandwidth - This also brings new challenge on filter design. In this work, we propose a new structure which combines OSAT Fan-Out RDL inductors and foundry MIM capacitors to enhance filter performance. A 800 MHz LPF test vehicle indicates this new structure is able to sustain 38 dBm at least, which is better than 36 dBm in the conventional IPD. Band pass filters for band n77 and n79 are designed and fabricated by this new structure as well. The insertion loss is about 1.44 dB for band n77 and 2.07 dB for band n79; The maximum sustainable input power is 34 dBm for both n77 filter and n79 filter. Besides single filter, Fan-Out RDL can replace conventional coreless packaging substrate to realize a thinner RF FEM.","PeriodicalId":139520,"journal":{"name":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integration of Foundry MIM Capacitor and OSAT Fan-Out RDL for High Performance RF Filters\",\"authors\":\"Pao-Nan Lee, Yu-Chang Hsieh, Hung-Lun Lo, Chang-Ho Li, F. Huang, James Lin, Wei-Chu Hsu, Chen-Chao Wang\",\"doi\":\"10.1109/ectc51906.2022.00211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"5G communication has been widely implemented since year 2020, especially for FR1 sub-6GHz range. Band n77, n78 and n79 are three critical bands in the 5G FR1 because of higher frequency and much wider bandwidth - This also brings new challenge on filter design. In this work, we propose a new structure which combines OSAT Fan-Out RDL inductors and foundry MIM capacitors to enhance filter performance. A 800 MHz LPF test vehicle indicates this new structure is able to sustain 38 dBm at least, which is better than 36 dBm in the conventional IPD. Band pass filters for band n77 and n79 are designed and fabricated by this new structure as well. The insertion loss is about 1.44 dB for band n77 and 2.07 dB for band n79; The maximum sustainable input power is 34 dBm for both n77 filter and n79 filter. Besides single filter, Fan-Out RDL can replace conventional coreless packaging substrate to realize a thinner RF FEM.\",\"PeriodicalId\":139520,\"journal\":{\"name\":\"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ectc51906.2022.00211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ectc51906.2022.00211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自2020年以来,5G通信已经广泛实施,特别是在FR1 sub-6GHz范围内。n77、n78和n79是5G FR1中的三个关键频段,因为它们的频率更高,带宽更宽,这也给滤波器设计带来了新的挑战。在这项工作中,我们提出了一种结合OSAT扇出RDL电感和铸造MIM电容器的新结构,以提高滤波器的性能。一辆800 MHz LPF测试车表明,这种新结构至少能够承受38 dBm,优于传统IPD的36 dBm。并利用该结构设计制作了n77和n79带通滤波器。n77和n79频段的插入损耗分别为1.44 dB和2.07 dB;n77滤波器和n79滤波器的最大持续输入功率均为34 dBm。除单滤波器外,扇出式RDL可以取代传统的无芯封装基板,实现更薄的射频FEM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of Foundry MIM Capacitor and OSAT Fan-Out RDL for High Performance RF Filters
5G communication has been widely implemented since year 2020, especially for FR1 sub-6GHz range. Band n77, n78 and n79 are three critical bands in the 5G FR1 because of higher frequency and much wider bandwidth - This also brings new challenge on filter design. In this work, we propose a new structure which combines OSAT Fan-Out RDL inductors and foundry MIM capacitors to enhance filter performance. A 800 MHz LPF test vehicle indicates this new structure is able to sustain 38 dBm at least, which is better than 36 dBm in the conventional IPD. Band pass filters for band n77 and n79 are designed and fabricated by this new structure as well. The insertion loss is about 1.44 dB for band n77 and 2.07 dB for band n79; The maximum sustainable input power is 34 dBm for both n77 filter and n79 filter. Besides single filter, Fan-Out RDL can replace conventional coreless packaging substrate to realize a thinner RF FEM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信