用于非线性状态估计的预训练神经网络

Enis Bayramoglu, N. Andersen, Ole Ravn, N. K. Poulsen
{"title":"用于非线性状态估计的预训练神经网络","authors":"Enis Bayramoglu, N. Andersen, Ole Ravn, N. K. Poulsen","doi":"10.1109/ICMLA.2011.118","DOIUrl":null,"url":null,"abstract":"The paper focuses on nonlinear state estimation assuming non-Gaussian distributions of the states and the disturbances. The posterior distribution and the a posteriori distribution is described by a chosen family of parametric distributions. The state transformation then results in a transformation of the parameters in the distribution. This transformation is approximated by a neural network using offline training, which is based on Monte Carlo Sampling. In the paper, there will also be presented a method to construct a flexible distributions well suited for covering the effect of the non-linear ties. The method can also be used to improve other parametric methods around regions with strong non-linear ties by including them inside the network.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pre-trained Neural Networks Used for Non-linear State Estimation\",\"authors\":\"Enis Bayramoglu, N. Andersen, Ole Ravn, N. K. Poulsen\",\"doi\":\"10.1109/ICMLA.2011.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper focuses on nonlinear state estimation assuming non-Gaussian distributions of the states and the disturbances. The posterior distribution and the a posteriori distribution is described by a chosen family of parametric distributions. The state transformation then results in a transformation of the parameters in the distribution. This transformation is approximated by a neural network using offline training, which is based on Monte Carlo Sampling. In the paper, there will also be presented a method to construct a flexible distributions well suited for covering the effect of the non-linear ties. The method can also be used to improve other parametric methods around regions with strong non-linear ties by including them inside the network.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文主要研究了假设状态和扰动的非高斯分布的非线性状态估计。后验分布和后验分布由一组选定的参数分布来描述。然后,状态转换导致分布中参数的转换。该变换由一个基于蒙特卡罗采样的离线训练神经网络来逼近。在本文中,还将提出一种构造灵活分布的方法,该分布非常适合于覆盖非线性关系的影响。该方法还可以通过将具有强非线性联系的区域包含在网络中来改进其他参数方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pre-trained Neural Networks Used for Non-linear State Estimation
The paper focuses on nonlinear state estimation assuming non-Gaussian distributions of the states and the disturbances. The posterior distribution and the a posteriori distribution is described by a chosen family of parametric distributions. The state transformation then results in a transformation of the parameters in the distribution. This transformation is approximated by a neural network using offline training, which is based on Monte Carlo Sampling. In the paper, there will also be presented a method to construct a flexible distributions well suited for covering the effect of the non-linear ties. The method can also be used to improve other parametric methods around regions with strong non-linear ties by including them inside the network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信