基于子图故障模式的排列图距离最优边连通性

Zhengqi Yu, Shuming Zhou, Hong Zhang, Xiaoqing Liu
{"title":"基于子图故障模式的排列图距离最优边连通性","authors":"Zhengqi Yu, Shuming Zhou, Hong Zhang, Xiaoqing Liu","doi":"10.1142/s0219265921500389","DOIUrl":null,"url":null,"abstract":"Large-scale multiprocessor systems or multicomputer systems based on networking have been extensively used in the big data era and social network. Fault tolerance is becoming an essential attribute in multiprocessor systems with the increase of the system scale. For any distinct vertices [Formula: see text], the local connectivity of [Formula: see text] and [Formula: see text], denoted by [Formula: see text], is the maximum number of independent [Formula: see text]-paths in system graph [Formula: see text]. The local edge connectivity of [Formula: see text], [Formula: see text], [Formula: see text], is defined similarly. For any [Formula: see text], [Formula: see text], if [Formula: see text] (or [Formula: see text], then [Formula: see text] is [Formula: see text]-distance optimally (edge) connected, where [Formula: see text] is the diameter of [Formula: see text] and [Formula: see text] is the degree of [Formula: see text]. For any integers [Formula: see text] subject to [Formula: see text], if [Formula: see text] is [Formula: see text]-distance optimally (edge) connected, then we call [Formula: see text] is [Formula: see text]-distance local optimally (edge) connected. In this work, we show that [Formula: see text] ([Formula: see text] is [Formula: see text]-arrangement graph) is [Formula: see text]-distance local optimally edge connected for [Formula: see text] and [Formula: see text].","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distance Optimally Edge Connectedness of Arrangement Graph Based on Subgraph Fault Pattern\",\"authors\":\"Zhengqi Yu, Shuming Zhou, Hong Zhang, Xiaoqing Liu\",\"doi\":\"10.1142/s0219265921500389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale multiprocessor systems or multicomputer systems based on networking have been extensively used in the big data era and social network. Fault tolerance is becoming an essential attribute in multiprocessor systems with the increase of the system scale. For any distinct vertices [Formula: see text], the local connectivity of [Formula: see text] and [Formula: see text], denoted by [Formula: see text], is the maximum number of independent [Formula: see text]-paths in system graph [Formula: see text]. The local edge connectivity of [Formula: see text], [Formula: see text], [Formula: see text], is defined similarly. For any [Formula: see text], [Formula: see text], if [Formula: see text] (or [Formula: see text], then [Formula: see text] is [Formula: see text]-distance optimally (edge) connected, where [Formula: see text] is the diameter of [Formula: see text] and [Formula: see text] is the degree of [Formula: see text]. For any integers [Formula: see text] subject to [Formula: see text], if [Formula: see text] is [Formula: see text]-distance optimally (edge) connected, then we call [Formula: see text] is [Formula: see text]-distance local optimally (edge) connected. In this work, we show that [Formula: see text] ([Formula: see text] is [Formula: see text]-arrangement graph) is [Formula: see text]-distance local optimally edge connected for [Formula: see text] and [Formula: see text].\",\"PeriodicalId\":153590,\"journal\":{\"name\":\"J. Interconnect. Networks\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Interconnect. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219265921500389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Interconnect. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265921500389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于网络的大型多处理机系统或多机系统在大数据时代和社会网络中得到了广泛的应用。随着多处理机系统规模的增大,容错性逐渐成为多处理机系统的基本属性。对于任意不同的顶点[公式:见文],[公式:见文]与[公式:见文]的局部连通性,用[公式:见文]表示为系统图[公式:见文]中独立[公式:见文]路径的最大数目。[公式:见文],[公式:见文],[公式:见文],[公式:见文]的局部边缘连通性定义类似。对于任意的[公式:见文],[公式:见文],如果[公式:见文](或[公式:见文]),则[公式:见文]是[公式:见文]的直径,[公式:见文]是[公式:见文]的度。对于服从于[公式:见文]的任意整数[公式:见文],如果[公式:见文]是[公式:见文]-距离最优(边)连通,则我们称[公式:见文]是[公式:见文]-距离局部最优(边)连通。在这项工作中,我们证明了[公式:见文]([公式:见文]是[公式:见文]-排列图)是[公式:见文]-距离局部最优边缘连接[公式:见文]和[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distance Optimally Edge Connectedness of Arrangement Graph Based on Subgraph Fault Pattern
Large-scale multiprocessor systems or multicomputer systems based on networking have been extensively used in the big data era and social network. Fault tolerance is becoming an essential attribute in multiprocessor systems with the increase of the system scale. For any distinct vertices [Formula: see text], the local connectivity of [Formula: see text] and [Formula: see text], denoted by [Formula: see text], is the maximum number of independent [Formula: see text]-paths in system graph [Formula: see text]. The local edge connectivity of [Formula: see text], [Formula: see text], [Formula: see text], is defined similarly. For any [Formula: see text], [Formula: see text], if [Formula: see text] (or [Formula: see text], then [Formula: see text] is [Formula: see text]-distance optimally (edge) connected, where [Formula: see text] is the diameter of [Formula: see text] and [Formula: see text] is the degree of [Formula: see text]. For any integers [Formula: see text] subject to [Formula: see text], if [Formula: see text] is [Formula: see text]-distance optimally (edge) connected, then we call [Formula: see text] is [Formula: see text]-distance local optimally (edge) connected. In this work, we show that [Formula: see text] ([Formula: see text] is [Formula: see text]-arrangement graph) is [Formula: see text]-distance local optimally edge connected for [Formula: see text] and [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信