弱监督对象定位的注意网络

Eu Wern Teh, Mrigank Rochan, Yang Wang
{"title":"弱监督对象定位的注意网络","authors":"Eu Wern Teh, Mrigank Rochan, Yang Wang","doi":"10.5244/C.30.52","DOIUrl":null,"url":null,"abstract":"We consider the problem of weakly supervised learning for object localization. Given a collection of images with image-level annotations indicating the presence/absence of an object, our goal is to localize the object in each image. We propose a neural network architecture called the attention network for this problem. Given a set of candidate regions in an image, the attention network first computes an attention score on each candidate region in the image. Then these candidate regions are combined together with their attention scores to form a whole-image feature vector. This feature vector is used for classifying the image. The object localization is implicitly achieved via the attention scores on candidate regions. We demonstrate that our approach achieves superior performance on several benchmark datasets.","PeriodicalId":125761,"journal":{"name":"Procedings of the British Machine Vision Conference 2016","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Attention Networks for Weakly Supervised Object Localization\",\"authors\":\"Eu Wern Teh, Mrigank Rochan, Yang Wang\",\"doi\":\"10.5244/C.30.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of weakly supervised learning for object localization. Given a collection of images with image-level annotations indicating the presence/absence of an object, our goal is to localize the object in each image. We propose a neural network architecture called the attention network for this problem. Given a set of candidate regions in an image, the attention network first computes an attention score on each candidate region in the image. Then these candidate regions are combined together with their attention scores to form a whole-image feature vector. This feature vector is used for classifying the image. The object localization is implicitly achieved via the attention scores on candidate regions. We demonstrate that our approach achieves superior performance on several benchmark datasets.\",\"PeriodicalId\":125761,\"journal\":{\"name\":\"Procedings of the British Machine Vision Conference 2016\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedings of the British Machine Vision Conference 2016\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5244/C.30.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedings of the British Machine Vision Conference 2016","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5244/C.30.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

研究了用于目标定位的弱监督学习问题。给定一组带有图像级注释的图像集合,指示对象的存在/不存在,我们的目标是在每个图像中定位对象。针对这一问题,我们提出了一种称为注意力网络的神经网络架构。给定图像中的一组候选区域,注意力网络首先计算图像中每个候选区域的注意力得分。然后将这些候选区域与它们的注意力分数组合在一起,形成一个完整的图像特征向量。该特征向量用于对图像进行分类。通过对候选区域的注意力得分隐式地实现目标定位。我们证明了我们的方法在几个基准数据集上取得了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attention Networks for Weakly Supervised Object Localization
We consider the problem of weakly supervised learning for object localization. Given a collection of images with image-level annotations indicating the presence/absence of an object, our goal is to localize the object in each image. We propose a neural network architecture called the attention network for this problem. Given a set of candidate regions in an image, the attention network first computes an attention score on each candidate region in the image. Then these candidate regions are combined together with their attention scores to form a whole-image feature vector. This feature vector is used for classifying the image. The object localization is implicitly achieved via the attention scores on candidate regions. We demonstrate that our approach achieves superior performance on several benchmark datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信