基于更快R-CNN的路边交通标志检测

Xingyu Fu, Bin Fang, Jiye Qian, Zhenni Wu, Jiajie Zhu, Tongxin Du
{"title":"基于更快R-CNN的路边交通标志检测","authors":"Xingyu Fu, Bin Fang, Jiye Qian, Zhenni Wu, Jiajie Zhu, Tongxin Du","doi":"10.1145/3318299.3318348","DOIUrl":null,"url":null,"abstract":"This paper presents an improved traffic sign detection method based on Faster R-CNN with dataset augmentation and subcategory detection scheme. Firstly, we extract natural scene frames from given videos and determine 20 categories of traffic signs. Secondly, we extend the image dataset and extract regions of interest, then manually annotate all categories. Thirdly, we train the Faster R-CNN model based on TensorFlow, then test the model and obtain the following evaluation indexes: the mean average precision is 99.07%, the recall rate is 99.66%, and the precision rate is 97.54%. Finally, we add the subcategory detection scheme to determine traffic light states, and we get the following evaluation indexes: the mean average precision is 99.50\\%, the recall rate is 100%, and the precision rate is 94.40\\%. Our experiments prove the robustness and accuracy for both traffic sign detection and subcategory detection of traffic light.","PeriodicalId":164987,"journal":{"name":"International Conference on Machine Learning and Computing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Roadside Traffic Sign Detection Based on Faster R-CNN\",\"authors\":\"Xingyu Fu, Bin Fang, Jiye Qian, Zhenni Wu, Jiajie Zhu, Tongxin Du\",\"doi\":\"10.1145/3318299.3318348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an improved traffic sign detection method based on Faster R-CNN with dataset augmentation and subcategory detection scheme. Firstly, we extract natural scene frames from given videos and determine 20 categories of traffic signs. Secondly, we extend the image dataset and extract regions of interest, then manually annotate all categories. Thirdly, we train the Faster R-CNN model based on TensorFlow, then test the model and obtain the following evaluation indexes: the mean average precision is 99.07%, the recall rate is 99.66%, and the precision rate is 97.54%. Finally, we add the subcategory detection scheme to determine traffic light states, and we get the following evaluation indexes: the mean average precision is 99.50\\\\%, the recall rate is 100%, and the precision rate is 94.40\\\\%. Our experiments prove the robustness and accuracy for both traffic sign detection and subcategory detection of traffic light.\",\"PeriodicalId\":164987,\"journal\":{\"name\":\"International Conference on Machine Learning and Computing\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3318299.3318348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318299.3318348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于Faster R-CNN的改进交通标志检测方法,并结合数据集增强和子类别检测方案。首先,我们从给定的视频中提取自然场景帧,并确定20类交通标志。其次,我们扩展图像数据集并提取感兴趣的区域,然后手动标注所有类别。第三,基于TensorFlow对Faster R-CNN模型进行训练,并对模型进行测试,得到了平均准确率为99.07%,召回率为99.66%,准确率为97.54%的评价指标。最后,我们加入了子类别检测方案来确定交通灯状态,得到了以下评价指标:平均准确率为99.50%,召回率为100%,准确率为94.40%。实验证明了该方法在交通标志检测和交通信号灯子类别检测方面的鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Roadside Traffic Sign Detection Based on Faster R-CNN
This paper presents an improved traffic sign detection method based on Faster R-CNN with dataset augmentation and subcategory detection scheme. Firstly, we extract natural scene frames from given videos and determine 20 categories of traffic signs. Secondly, we extend the image dataset and extract regions of interest, then manually annotate all categories. Thirdly, we train the Faster R-CNN model based on TensorFlow, then test the model and obtain the following evaluation indexes: the mean average precision is 99.07%, the recall rate is 99.66%, and the precision rate is 97.54%. Finally, we add the subcategory detection scheme to determine traffic light states, and we get the following evaluation indexes: the mean average precision is 99.50\%, the recall rate is 100%, and the precision rate is 94.40\%. Our experiments prove the robustness and accuracy for both traffic sign detection and subcategory detection of traffic light.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信