基于反向传播神经网络的嵌入式软件故障预测

P. Zong, Yichen Wang, F. Xie
{"title":"基于反向传播神经网络的嵌入式软件故障预测","authors":"P. Zong, Yichen Wang, F. Xie","doi":"10.1109/QRS-C.2018.00098","DOIUrl":null,"url":null,"abstract":"Predicting software faults before software testing activities can help rational distribution of time and resources. Software metrics are used for software fault prediction due to their close relationship with software faults. Thanks to the non-linear fitting ability, Neural networks are increasingly used in the prediction model. We first filter metric set of the embedded software by statistical methods to reduce the dimensions of model input. Then we build a back propagation neural network with simple structure but good performance and apply it to two practical embedded software projects. The verification results show that the model has good ability to predict software faults.","PeriodicalId":199384,"journal":{"name":"2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Embedded Software Fault Prediction Based on Back Propagation Neural Network\",\"authors\":\"P. Zong, Yichen Wang, F. Xie\",\"doi\":\"10.1109/QRS-C.2018.00098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting software faults before software testing activities can help rational distribution of time and resources. Software metrics are used for software fault prediction due to their close relationship with software faults. Thanks to the non-linear fitting ability, Neural networks are increasingly used in the prediction model. We first filter metric set of the embedded software by statistical methods to reduce the dimensions of model input. Then we build a back propagation neural network with simple structure but good performance and apply it to two practical embedded software projects. The verification results show that the model has good ability to predict software faults.\",\"PeriodicalId\":199384,\"journal\":{\"name\":\"2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS-C.2018.00098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS-C.2018.00098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在软件测试活动之前预测软件故障可以帮助合理分配时间和资源。软件度量由于与软件故障的密切关系而被用于软件故障预测。由于神经网络具有非线性拟合的能力,在预测模型中得到越来越多的应用。首先用统计方法对嵌入式软件的度量集进行过滤,降低模型输入的维数;然后,我们构建了一个结构简单但性能良好的反向传播神经网络,并将其应用于两个实际的嵌入式软件项目中。验证结果表明,该模型具有较好的软件故障预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedded Software Fault Prediction Based on Back Propagation Neural Network
Predicting software faults before software testing activities can help rational distribution of time and resources. Software metrics are used for software fault prediction due to their close relationship with software faults. Thanks to the non-linear fitting ability, Neural networks are increasingly used in the prediction model. We first filter metric set of the embedded software by statistical methods to reduce the dimensions of model input. Then we build a back propagation neural network with simple structure but good performance and apply it to two practical embedded software projects. The verification results show that the model has good ability to predict software faults.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信