加湿微型燃气轮机运行灵活性优化控制策略开发:饱和塔性能评估

W. D. Paepe, Alessio Pappa, Diederik Coppitters, M. M. Carrero, P. Tsirikoglou, F. Contino
{"title":"加湿微型燃气轮机运行灵活性优化控制策略开发:饱和塔性能评估","authors":"W. D. Paepe, Alessio Pappa, Diederik Coppitters, M. M. Carrero, P. Tsirikoglou, F. Contino","doi":"10.1115/gt2021-60209","DOIUrl":null,"url":null,"abstract":"\n Waste heat recovery through cycle humidification is considered as an effective tool to increase the operational flexibility of micro Gas Turbines (mGTs) in cogeneration in a Decentralized Energy System (DES) context. Indeed, during periods with low heat demand, the excess thermal power can be reintroduced in the cycle under the form of heated water/steam, leading to improved electrical performance. The micro Humid Air Turbine (mHAT) has been proven to be the most effective route for cycle humidification; however, so far, all research efforts focused on optimizing the mHAT performance at nominal electrical load, and no thermal load. Nevertheless, in a DES context, the thermal and electrical load of the mGT needs to be changed depending on the demand, requiring both optimal nominal and part load performances. To address this need, in this paper, we present the first step towards the development of a control strategy for a Turbec T100 mGT-mHAT test rig. First, using experimental data, the global performance, depending on the operating point as well as the humidity level, has been assessed. Second, the performance of the saturation tower, i.e. the degree of saturation (relative humidity) of the working fluid leaving this saturator, is analyzed to assess the optimal water injection system control parameter settings. Results show that optimal mHAT performance can only be obtained when the working fluid leaving the saturation tower is fully saturated, but does not contain a remaining liquid fraction. Under these conditions, a maximal amount of waste heat is transferred from the water to the mGT working fluid in the saturation tower. From these data, some general observations can be made to optimize the performance; being maximizing injection pressure and aiming for a water flow rate of ≈5 m3/h. However, having a specific control matrix, that allows setting the saturation tower control parameters for any set of operational setpoint and the inlet conditions would be of more interest. Therefore, future work involves the development of a control matrix, using advanced data post-processing for noise reduction and accuracy improvement, as well as an experimental validation of this methodology on the actual test rig.","PeriodicalId":169840,"journal":{"name":"Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Control Strategy Development for Optimized Operational Flexibility From Humidified Micro Gas Turbine: Saturation Tower Performance Assessment\",\"authors\":\"W. D. Paepe, Alessio Pappa, Diederik Coppitters, M. M. Carrero, P. Tsirikoglou, F. Contino\",\"doi\":\"10.1115/gt2021-60209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Waste heat recovery through cycle humidification is considered as an effective tool to increase the operational flexibility of micro Gas Turbines (mGTs) in cogeneration in a Decentralized Energy System (DES) context. Indeed, during periods with low heat demand, the excess thermal power can be reintroduced in the cycle under the form of heated water/steam, leading to improved electrical performance. The micro Humid Air Turbine (mHAT) has been proven to be the most effective route for cycle humidification; however, so far, all research efforts focused on optimizing the mHAT performance at nominal electrical load, and no thermal load. Nevertheless, in a DES context, the thermal and electrical load of the mGT needs to be changed depending on the demand, requiring both optimal nominal and part load performances. To address this need, in this paper, we present the first step towards the development of a control strategy for a Turbec T100 mGT-mHAT test rig. First, using experimental data, the global performance, depending on the operating point as well as the humidity level, has been assessed. Second, the performance of the saturation tower, i.e. the degree of saturation (relative humidity) of the working fluid leaving this saturator, is analyzed to assess the optimal water injection system control parameter settings. Results show that optimal mHAT performance can only be obtained when the working fluid leaving the saturation tower is fully saturated, but does not contain a remaining liquid fraction. Under these conditions, a maximal amount of waste heat is transferred from the water to the mGT working fluid in the saturation tower. From these data, some general observations can be made to optimize the performance; being maximizing injection pressure and aiming for a water flow rate of ≈5 m3/h. However, having a specific control matrix, that allows setting the saturation tower control parameters for any set of operational setpoint and the inlet conditions would be of more interest. Therefore, future work involves the development of a control matrix, using advanced data post-processing for noise reduction and accuracy improvement, as well as an experimental validation of this methodology on the actual test rig.\",\"PeriodicalId\":169840,\"journal\":{\"name\":\"Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-60209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-60209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过循环加湿的余热回收被认为是在分散能源系统(DES)环境中增加微型燃气轮机(mGTs)热电联产操作灵活性的有效工具。事实上,在热需求较低的时期,多余的热功率可以以热水/蒸汽的形式重新引入循环,从而提高电气性能。微湿空气涡轮(mHAT)已被证明是最有效的循环加湿途径;然而,到目前为止,所有的研究工作都集中在优化mHAT在标称电负荷下的性能,而不是热负荷。然而,在DES环境中,mGT的热负载和电负载需要根据需求进行改变,这需要最佳的标称负载和部分负载性能。为了满足这一需求,在本文中,我们提出了开发Turbec T100 mGT-mHAT试验台控制策略的第一步。首先,利用实验数据,根据工作点和湿度水平,评估了整体性能。其次,分析饱和塔的性能,即离开饱和器的工作流体的饱和程度(相对湿度),以评估注水系统的最佳控制参数设置。结果表明,只有当离开饱和塔的工作流体完全饱和,而不含剩余液体时,才能获得最佳的mHAT性能。在这些条件下,最大数量的废热从水传递到饱和塔中的mGT工作流体。根据这些数据,可以进行一些一般性的观察以优化性能;最大注入压力,目标水流量≈5 m3/h。然而,有一个特定的控制矩阵,允许设置任何一组操作设定值和入口条件的饱和塔控制参数将是更有趣的。因此,未来的工作包括开发控制矩阵,使用先进的数据后处理来降低噪声和提高精度,以及在实际测试台上对该方法进行实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control Strategy Development for Optimized Operational Flexibility From Humidified Micro Gas Turbine: Saturation Tower Performance Assessment
Waste heat recovery through cycle humidification is considered as an effective tool to increase the operational flexibility of micro Gas Turbines (mGTs) in cogeneration in a Decentralized Energy System (DES) context. Indeed, during periods with low heat demand, the excess thermal power can be reintroduced in the cycle under the form of heated water/steam, leading to improved electrical performance. The micro Humid Air Turbine (mHAT) has been proven to be the most effective route for cycle humidification; however, so far, all research efforts focused on optimizing the mHAT performance at nominal electrical load, and no thermal load. Nevertheless, in a DES context, the thermal and electrical load of the mGT needs to be changed depending on the demand, requiring both optimal nominal and part load performances. To address this need, in this paper, we present the first step towards the development of a control strategy for a Turbec T100 mGT-mHAT test rig. First, using experimental data, the global performance, depending on the operating point as well as the humidity level, has been assessed. Second, the performance of the saturation tower, i.e. the degree of saturation (relative humidity) of the working fluid leaving this saturator, is analyzed to assess the optimal water injection system control parameter settings. Results show that optimal mHAT performance can only be obtained when the working fluid leaving the saturation tower is fully saturated, but does not contain a remaining liquid fraction. Under these conditions, a maximal amount of waste heat is transferred from the water to the mGT working fluid in the saturation tower. From these data, some general observations can be made to optimize the performance; being maximizing injection pressure and aiming for a water flow rate of ≈5 m3/h. However, having a specific control matrix, that allows setting the saturation tower control parameters for any set of operational setpoint and the inlet conditions would be of more interest. Therefore, future work involves the development of a control matrix, using advanced data post-processing for noise reduction and accuracy improvement, as well as an experimental validation of this methodology on the actual test rig.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信