相位编码结构光场的快速几何估计

Li Liu, S. Xiang, Huiping Deng, Jin Wu
{"title":"相位编码结构光场的快速几何估计","authors":"Li Liu, S. Xiang, Huiping Deng, Jin Wu","doi":"10.1109/VCIP49819.2020.9301777","DOIUrl":null,"url":null,"abstract":"Estimation scene geometry is an important and fundamental task in light field processing. In conventional light field, there exist homogeneous texture surfaces, which brings ambiguity and heavy computation load in estimating the depth. In this paper, we propose phase-coding structured light field (PSLF), which projects sinusoidal waveform patterns and the phase is assigned to every pixel as the code. With the EPI of PSLF, we propose a depth estimation method. To be specific, the cost is convex with respect to the inclination angle of the candidate line in the EPI, and we propose to iterate rotating the candidate line until it converges to the optimal one. In addition, to cope with problem that the candidate samples cover multiple depth layers, we propose a method to reject the outlier samples. Experimental results demonstrate that, compared with conventional LF, the proposed PSLF improves the depth quality with mean absolute error being 0.007 pixels. In addition, the proposed optimization-based depth estimation method improves efficiency obviously with the processing speed being about 2.71 times of the tradition method.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast Geometry Estimation for Phase-coding Structured Light Field\",\"authors\":\"Li Liu, S. Xiang, Huiping Deng, Jin Wu\",\"doi\":\"10.1109/VCIP49819.2020.9301777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation scene geometry is an important and fundamental task in light field processing. In conventional light field, there exist homogeneous texture surfaces, which brings ambiguity and heavy computation load in estimating the depth. In this paper, we propose phase-coding structured light field (PSLF), which projects sinusoidal waveform patterns and the phase is assigned to every pixel as the code. With the EPI of PSLF, we propose a depth estimation method. To be specific, the cost is convex with respect to the inclination angle of the candidate line in the EPI, and we propose to iterate rotating the candidate line until it converges to the optimal one. In addition, to cope with problem that the candidate samples cover multiple depth layers, we propose a method to reject the outlier samples. Experimental results demonstrate that, compared with conventional LF, the proposed PSLF improves the depth quality with mean absolute error being 0.007 pixels. In addition, the proposed optimization-based depth estimation method improves efficiency obviously with the processing speed being about 2.71 times of the tradition method.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

场景几何估计是光场处理中重要而基础的任务。常规光场中存在均匀纹理表面,在深度估计中存在模糊性,计算量大。本文提出了一种相位编码结构光场(PSLF)技术,该技术可以投影正弦波形,并将相位分配到每个像素作为编码。利用PSLF的EPI,提出了一种深度估计方法。具体来说,成本相对于EPI中候选线的倾角是凸的,我们建议迭代旋转候选线,直到它收敛到最优线。此外,针对候选样本覆盖多个深度层的问题,提出了一种拒绝离群样本的方法。实验结果表明,与传统LF相比,PSLF提高了深度质量,平均绝对误差为0.007像素。此外,基于优化的深度估计方法显著提高了效率,处理速度约为传统方法的2.71倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Geometry Estimation for Phase-coding Structured Light Field
Estimation scene geometry is an important and fundamental task in light field processing. In conventional light field, there exist homogeneous texture surfaces, which brings ambiguity and heavy computation load in estimating the depth. In this paper, we propose phase-coding structured light field (PSLF), which projects sinusoidal waveform patterns and the phase is assigned to every pixel as the code. With the EPI of PSLF, we propose a depth estimation method. To be specific, the cost is convex with respect to the inclination angle of the candidate line in the EPI, and we propose to iterate rotating the candidate line until it converges to the optimal one. In addition, to cope with problem that the candidate samples cover multiple depth layers, we propose a method to reject the outlier samples. Experimental results demonstrate that, compared with conventional LF, the proposed PSLF improves the depth quality with mean absolute error being 0.007 pixels. In addition, the proposed optimization-based depth estimation method improves efficiency obviously with the processing speed being about 2.71 times of the tradition method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信