{"title":"条件和后验分布的鲁棒核嵌入及其应用","authors":"M. Nawaz, Omar Arif","doi":"10.1109/ICMLA.2016.0016","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel non-parametric method to robustly embed conditional and posterior distributions to reproducing Kernel Hilbert space (RKHS). Robust embedding is obtained by the eigenvalue decomposition in the RKHS. By retaining only the leading eigenvectors, the noise in data is methodically disregarded. The non-parametric conditional and posterior distribution embedding obtained by our method can be applied to a wide range of Bayesian inference problems. In this paper, we apply it to heterogeneous face recognition and zero-shot object recognition problems. Experimental validation shows that our method produces better results than the comparative algorithms.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust Kernel Embedding of Conditional and Posterior Distributions with Applications\",\"authors\":\"M. Nawaz, Omar Arif\",\"doi\":\"10.1109/ICMLA.2016.0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel non-parametric method to robustly embed conditional and posterior distributions to reproducing Kernel Hilbert space (RKHS). Robust embedding is obtained by the eigenvalue decomposition in the RKHS. By retaining only the leading eigenvectors, the noise in data is methodically disregarded. The non-parametric conditional and posterior distribution embedding obtained by our method can be applied to a wide range of Bayesian inference problems. In this paper, we apply it to heterogeneous face recognition and zero-shot object recognition problems. Experimental validation shows that our method produces better results than the comparative algorithms.\",\"PeriodicalId\":356182,\"journal\":{\"name\":\"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2016.0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust Kernel Embedding of Conditional and Posterior Distributions with Applications
This paper proposes a novel non-parametric method to robustly embed conditional and posterior distributions to reproducing Kernel Hilbert space (RKHS). Robust embedding is obtained by the eigenvalue decomposition in the RKHS. By retaining only the leading eigenvectors, the noise in data is methodically disregarded. The non-parametric conditional and posterior distribution embedding obtained by our method can be applied to a wide range of Bayesian inference problems. In this paper, we apply it to heterogeneous face recognition and zero-shot object recognition problems. Experimental validation shows that our method produces better results than the comparative algorithms.