条件和后验分布的鲁棒核嵌入及其应用

M. Nawaz, Omar Arif
{"title":"条件和后验分布的鲁棒核嵌入及其应用","authors":"M. Nawaz, Omar Arif","doi":"10.1109/ICMLA.2016.0016","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel non-parametric method to robustly embed conditional and posterior distributions to reproducing Kernel Hilbert space (RKHS). Robust embedding is obtained by the eigenvalue decomposition in the RKHS. By retaining only the leading eigenvectors, the noise in data is methodically disregarded. The non-parametric conditional and posterior distribution embedding obtained by our method can be applied to a wide range of Bayesian inference problems. In this paper, we apply it to heterogeneous face recognition and zero-shot object recognition problems. Experimental validation shows that our method produces better results than the comparative algorithms.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust Kernel Embedding of Conditional and Posterior Distributions with Applications\",\"authors\":\"M. Nawaz, Omar Arif\",\"doi\":\"10.1109/ICMLA.2016.0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel non-parametric method to robustly embed conditional and posterior distributions to reproducing Kernel Hilbert space (RKHS). Robust embedding is obtained by the eigenvalue decomposition in the RKHS. By retaining only the leading eigenvectors, the noise in data is methodically disregarded. The non-parametric conditional and posterior distribution embedding obtained by our method can be applied to a wide range of Bayesian inference problems. In this paper, we apply it to heterogeneous face recognition and zero-shot object recognition problems. Experimental validation shows that our method produces better results than the comparative algorithms.\",\"PeriodicalId\":356182,\"journal\":{\"name\":\"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2016.0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种新的非参数方法,将条件分布和后验分布鲁棒嵌入到核希尔伯特空间(RKHS)的再现中。在RKHS中通过特征值分解得到鲁棒嵌入。通过只保留主要特征向量,数据中的噪声被有条不紊地忽略。该方法得到的非参数条件和后验分布嵌入可以应用于广泛的贝叶斯推理问题。本文将其应用于异构人脸识别和零射击目标识别问题。实验验证表明,该方法比比较算法的效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Kernel Embedding of Conditional and Posterior Distributions with Applications
This paper proposes a novel non-parametric method to robustly embed conditional and posterior distributions to reproducing Kernel Hilbert space (RKHS). Robust embedding is obtained by the eigenvalue decomposition in the RKHS. By retaining only the leading eigenvectors, the noise in data is methodically disregarded. The non-parametric conditional and posterior distribution embedding obtained by our method can be applied to a wide range of Bayesian inference problems. In this paper, we apply it to heterogeneous face recognition and zero-shot object recognition problems. Experimental validation shows that our method produces better results than the comparative algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信