{"title":"计算智能方法在证券交易预测问题中的研究","authors":"Y. Zaychenko, Galib Hamidov, Aydin Gasanov","doi":"10.20535/srit.2308-8893.2021.2.03","DOIUrl":null,"url":null,"abstract":"In this paper, the forecasting problem of share prices at the New York Stock Exchange (NYSE) was considered and investigated. For its solution the alternative methods of computational intelligence were suggested and investigated: LSTM networks, GRU, simple recurrent neural networks (RNN) and Group Method of Data Handling (GMDH). The experimental investigations of intelligent methods for the problem of CISCO share prices were carried out and the efficiency of forecasting methods was estimated and compared. It was established that method GMDH had the best forecasting accuracy compared to other methods in the problem of share prices forecasting.","PeriodicalId":330635,"journal":{"name":"System research and information technologies","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of computational intelligence methods in forecasting problems at stock exchanges\",\"authors\":\"Y. Zaychenko, Galib Hamidov, Aydin Gasanov\",\"doi\":\"10.20535/srit.2308-8893.2021.2.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the forecasting problem of share prices at the New York Stock Exchange (NYSE) was considered and investigated. For its solution the alternative methods of computational intelligence were suggested and investigated: LSTM networks, GRU, simple recurrent neural networks (RNN) and Group Method of Data Handling (GMDH). The experimental investigations of intelligent methods for the problem of CISCO share prices were carried out and the efficiency of forecasting methods was estimated and compared. It was established that method GMDH had the best forecasting accuracy compared to other methods in the problem of share prices forecasting.\",\"PeriodicalId\":330635,\"journal\":{\"name\":\"System research and information technologies\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"System research and information technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20535/srit.2308-8893.2021.2.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"System research and information technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/srit.2308-8893.2021.2.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of computational intelligence methods in forecasting problems at stock exchanges
In this paper, the forecasting problem of share prices at the New York Stock Exchange (NYSE) was considered and investigated. For its solution the alternative methods of computational intelligence were suggested and investigated: LSTM networks, GRU, simple recurrent neural networks (RNN) and Group Method of Data Handling (GMDH). The experimental investigations of intelligent methods for the problem of CISCO share prices were carried out and the efficiency of forecasting methods was estimated and compared. It was established that method GMDH had the best forecasting accuracy compared to other methods in the problem of share prices forecasting.