赫斯顿模型中的算法复杂性:一个实现视图

H. Marxen, A. Kostiuk, R. Korn, C. D. Schryver, S. Wurm, I. Shcherbakov, N. Wehn
{"title":"赫斯顿模型中的算法复杂性:一个实现视图","authors":"H. Marxen, A. Kostiuk, R. Korn, C. D. Schryver, S. Wurm, I. Shcherbakov, N. Wehn","doi":"10.1145/2088256.2088261","DOIUrl":null,"url":null,"abstract":"In this paper, we present an in-depth investigation of the algorithmic parameter influence for barrier option pricing with the Heston model. For that purpose we focus on single- and multi-level Monte Carlo simulation methods. We investigate the impact of algorithmic variations on simulation time and energy consumption, giving detailed measurement results for a state-of-the-art 8-core CPU server and a Nvidia Tesla C2050 GPU. We particularly show that a naive algorithm on a powerful GPU can even increase the energy consumption and computation time, compared to a better algorithm running on a standard CPU. Furthermore we give preliminary results of a dedicated FPGA implementation and comment on the speedup and energy saving potential of this architecture.","PeriodicalId":241950,"journal":{"name":"High Performance Computational Finance","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Algorithmic complexity in the heston model: an implementation view\",\"authors\":\"H. Marxen, A. Kostiuk, R. Korn, C. D. Schryver, S. Wurm, I. Shcherbakov, N. Wehn\",\"doi\":\"10.1145/2088256.2088261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an in-depth investigation of the algorithmic parameter influence for barrier option pricing with the Heston model. For that purpose we focus on single- and multi-level Monte Carlo simulation methods. We investigate the impact of algorithmic variations on simulation time and energy consumption, giving detailed measurement results for a state-of-the-art 8-core CPU server and a Nvidia Tesla C2050 GPU. We particularly show that a naive algorithm on a powerful GPU can even increase the energy consumption and computation time, compared to a better algorithm running on a standard CPU. Furthermore we give preliminary results of a dedicated FPGA implementation and comment on the speedup and energy saving potential of this architecture.\",\"PeriodicalId\":241950,\"journal\":{\"name\":\"High Performance Computational Finance\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Performance Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2088256.2088261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Performance Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2088256.2088261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文利用Heston模型深入研究了障碍期权定价的算法参数影响。为此,我们着重于单级和多级蒙特卡罗模拟方法。我们研究了算法变化对仿真时间和能耗的影响,给出了最先进的8核CPU服务器和Nvidia Tesla C2050 GPU的详细测量结果。我们特别指出,与在标准CPU上运行更好的算法相比,在强大的GPU上运行朴素算法甚至可以增加能耗和计算时间。此外,我们给出了一个专用FPGA实现的初步结果,并对该架构的加速和节能潜力进行了评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithmic complexity in the heston model: an implementation view
In this paper, we present an in-depth investigation of the algorithmic parameter influence for barrier option pricing with the Heston model. For that purpose we focus on single- and multi-level Monte Carlo simulation methods. We investigate the impact of algorithmic variations on simulation time and energy consumption, giving detailed measurement results for a state-of-the-art 8-core CPU server and a Nvidia Tesla C2050 GPU. We particularly show that a naive algorithm on a powerful GPU can even increase the energy consumption and computation time, compared to a better algorithm running on a standard CPU. Furthermore we give preliminary results of a dedicated FPGA implementation and comment on the speedup and energy saving potential of this architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信