模式识别的特征排序:过滤方法的比较

E. Test, V. Kecman, R. Strack, Qi Li, R. Salman
{"title":"模式识别的特征排序:过滤方法的比较","authors":"E. Test, V. Kecman, R. Strack, Qi Li, R. Salman","doi":"10.1109/SECON.2012.6196888","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for comparing various feature ranking (FR) methods. First, six classification benchmarks are created using Exhaustive Search (ES) to select the best feature subsets. The subset selections have been done within double (nested) cross-validation procedures guaranteeing realistic accuracy predictions to unseen examples. Next, seven filter FR approaches are compared and ranked in respect to the top five best feature subsets for each data set. This paper also introduces a method for quantifying and comparing FR results. The results hint that using Gini index or scatter ratios leads to rankings closest to ES on average.","PeriodicalId":187091,"journal":{"name":"2012 Proceedings of IEEE Southeastcon","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Feature ranking for pattern recognition: A comparison of filter methods\",\"authors\":\"E. Test, V. Kecman, R. Strack, Qi Li, R. Salman\",\"doi\":\"10.1109/SECON.2012.6196888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach for comparing various feature ranking (FR) methods. First, six classification benchmarks are created using Exhaustive Search (ES) to select the best feature subsets. The subset selections have been done within double (nested) cross-validation procedures guaranteeing realistic accuracy predictions to unseen examples. Next, seven filter FR approaches are compared and ranked in respect to the top five best feature subsets for each data set. This paper also introduces a method for quantifying and comparing FR results. The results hint that using Gini index or scatter ratios leads to rankings closest to ES on average.\",\"PeriodicalId\":187091,\"journal\":{\"name\":\"2012 Proceedings of IEEE Southeastcon\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Proceedings of IEEE Southeastcon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.2012.6196888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Proceedings of IEEE Southeastcon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2012.6196888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种比较各种特征排序方法的方法。首先,使用穷举搜索(ES)创建六个分类基准,以选择最佳特征子集。子集选择在双重(嵌套)交叉验证过程中完成,保证了对未见示例的现实准确性预测。接下来,对七个滤波FR方法进行比较,并根据每个数据集的前五个最佳特征子集进行排名。本文还介绍了一种量化和比较FR结果的方法。结果表明,使用基尼指数或散点比可以得出最接近ES的平均排名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature ranking for pattern recognition: A comparison of filter methods
This paper presents an approach for comparing various feature ranking (FR) methods. First, six classification benchmarks are created using Exhaustive Search (ES) to select the best feature subsets. The subset selections have been done within double (nested) cross-validation procedures guaranteeing realistic accuracy predictions to unseen examples. Next, seven filter FR approaches are compared and ranked in respect to the top five best feature subsets for each data set. This paper also introduces a method for quantifying and comparing FR results. The results hint that using Gini index or scatter ratios leads to rankings closest to ES on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信