并行排序的复杂性

F. Heide, A. Wigderson
{"title":"并行排序的复杂性","authors":"F. Heide, A. Wigderson","doi":"10.1137/0216008","DOIUrl":null,"url":null,"abstract":"We consider PRAM's with arbitrary computational power for individual processors, infinitely large shared memory and \"priority\" writeconflict resolution. The main result is that sorting n integers with n processors requires Ω(√log n) steps in this strong model. We also show that computing any symmetric polynomial (e.g. the sum or product) of n integers requires exactly log2n steps, for any finite number of processors.","PeriodicalId":296739,"journal":{"name":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"The complexity of parallel sorting\",\"authors\":\"F. Heide, A. Wigderson\",\"doi\":\"10.1137/0216008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider PRAM's with arbitrary computational power for individual processors, infinitely large shared memory and \\\"priority\\\" writeconflict resolution. The main result is that sorting n integers with n processors requires Ω(√log n) steps in this strong model. We also show that computing any symmetric polynomial (e.g. the sum or product) of n integers requires exactly log2n steps, for any finite number of processors.\",\"PeriodicalId\":296739,\"journal\":{\"name\":\"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0216008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0216008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

我们认为PRAM具有任意单个处理器的计算能力,无限大的共享内存和“优先级”写冲突解决。主要结果是,在这个强模型中,用n个处理器排序n个整数需要Ω(√log n)个步骤。我们还证明,对于任意有限数量的处理器,计算n个整数的任何对称多项式(例如和或积)需要精确的log2n步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The complexity of parallel sorting
We consider PRAM's with arbitrary computational power for individual processors, infinitely large shared memory and "priority" writeconflict resolution. The main result is that sorting n integers with n processors requires Ω(√log n) steps in this strong model. We also show that computing any symmetric polynomial (e.g. the sum or product) of n integers requires exactly log2n steps, for any finite number of processors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信