{"title":"通过事件重排序保护复杂事件处理中的隐私和服务质量","authors":"S. Palanisamy, Frank Dürr, M. Tariq, K. Rothermel","doi":"10.1145/3210284.3210296","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) envisions a huge number of networked sensors connected to the internet. These sensors collect large streams of data which serve as input to wide range of IoT applications and services such as e-health, e-commerce, and automotive services. Complex Event Processing (CEP) is a powerful tool that transforms streams of raw sensor data into meaningful information required by these IoT services. Often these streams of data collected by sensors carry privacy-sensitive information about the user. Thus, protecting privacy is of paramount importance in IoT services based on CEP. In this paper we present a novel pattern-level access control mechanism for CEP based services that conceals private information while minimizing the impact on useful non-sensitive information required by the services to provide a certain quality of service (QoS). The idea is to reorder events from the event stream to conceal privacy-sensitive event patterns while preserving non-privacy sensitive event patterns to maximize QoS. We propose two approaches, namely an ILP-based approach and a graph-based approach, calculating an optimal reordering of events. Our evaluation results show that these approaches are effective in concealing private patterns without significant loss of QoS.","PeriodicalId":412438,"journal":{"name":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Preserving Privacy and Quality of Service in Complex Event Processing through Event Reordering\",\"authors\":\"S. Palanisamy, Frank Dürr, M. Tariq, K. Rothermel\",\"doi\":\"10.1145/3210284.3210296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) envisions a huge number of networked sensors connected to the internet. These sensors collect large streams of data which serve as input to wide range of IoT applications and services such as e-health, e-commerce, and automotive services. Complex Event Processing (CEP) is a powerful tool that transforms streams of raw sensor data into meaningful information required by these IoT services. Often these streams of data collected by sensors carry privacy-sensitive information about the user. Thus, protecting privacy is of paramount importance in IoT services based on CEP. In this paper we present a novel pattern-level access control mechanism for CEP based services that conceals private information while minimizing the impact on useful non-sensitive information required by the services to provide a certain quality of service (QoS). The idea is to reorder events from the event stream to conceal privacy-sensitive event patterns while preserving non-privacy sensitive event patterns to maximize QoS. We propose two approaches, namely an ILP-based approach and a graph-based approach, calculating an optimal reordering of events. Our evaluation results show that these approaches are effective in concealing private patterns without significant loss of QoS.\",\"PeriodicalId\":412438,\"journal\":{\"name\":\"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3210284.3210296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3210284.3210296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preserving Privacy and Quality of Service in Complex Event Processing through Event Reordering
The Internet of Things (IoT) envisions a huge number of networked sensors connected to the internet. These sensors collect large streams of data which serve as input to wide range of IoT applications and services such as e-health, e-commerce, and automotive services. Complex Event Processing (CEP) is a powerful tool that transforms streams of raw sensor data into meaningful information required by these IoT services. Often these streams of data collected by sensors carry privacy-sensitive information about the user. Thus, protecting privacy is of paramount importance in IoT services based on CEP. In this paper we present a novel pattern-level access control mechanism for CEP based services that conceals private information while minimizing the impact on useful non-sensitive information required by the services to provide a certain quality of service (QoS). The idea is to reorder events from the event stream to conceal privacy-sensitive event patterns while preserving non-privacy sensitive event patterns to maximize QoS. We propose two approaches, namely an ILP-based approach and a graph-based approach, calculating an optimal reordering of events. Our evaluation results show that these approaches are effective in concealing private patterns without significant loss of QoS.