支持向量机网络在混合模型环境参数估计中的应用

Dinh Do Van, Nhuong Dinh Van, L. Hoai
{"title":"支持向量机网络在混合模型环境参数估计中的应用","authors":"Dinh Do Van, Nhuong Dinh Van, L. Hoai","doi":"10.1109/ICSET.2016.7811780","DOIUrl":null,"url":null,"abstract":"Weather forecast is a valuable practical problem and has important implications for agriculture, industry and other services. There have been different proposed methods to forecast the weather parameters [3, 6, 8, 9], but the parameters of the prediction model depends on the geographical conditions and the economic development of the given area. Therefore, for every new location, we need to redefine the parameters of the model or to propose a more suitable model. This paper proposes to use an artificial neural network SVM (Support Vector Machine) in a hybrid model [2] to predict the maximum and minimum temperature of the day. The input data is the historical values of maximum and minimum temperatures, humidity, wind speed and average values of rainfall, sun hours for past days. Model inputs are evaluated and selected using linear decomposition coefficients estimated using SVD (Singular Value Decomposition). The quality of the proposed solution is tested on real 2191 days data from the province of Hai Duong.","PeriodicalId":164446,"journal":{"name":"2016 IEEE International Conference on Sustainable Energy Technologies (ICSET)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of SVM networks in hybrid model for environment parameters estimation\",\"authors\":\"Dinh Do Van, Nhuong Dinh Van, L. Hoai\",\"doi\":\"10.1109/ICSET.2016.7811780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weather forecast is a valuable practical problem and has important implications for agriculture, industry and other services. There have been different proposed methods to forecast the weather parameters [3, 6, 8, 9], but the parameters of the prediction model depends on the geographical conditions and the economic development of the given area. Therefore, for every new location, we need to redefine the parameters of the model or to propose a more suitable model. This paper proposes to use an artificial neural network SVM (Support Vector Machine) in a hybrid model [2] to predict the maximum and minimum temperature of the day. The input data is the historical values of maximum and minimum temperatures, humidity, wind speed and average values of rainfall, sun hours for past days. Model inputs are evaluated and selected using linear decomposition coefficients estimated using SVD (Singular Value Decomposition). The quality of the proposed solution is tested on real 2191 days data from the province of Hai Duong.\",\"PeriodicalId\":164446,\"journal\":{\"name\":\"2016 IEEE International Conference on Sustainable Energy Technologies (ICSET)\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Sustainable Energy Technologies (ICSET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSET.2016.7811780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Sustainable Energy Technologies (ICSET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSET.2016.7811780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

天气预报是一个有价值的实际问题,对农业、工业和其他服务业具有重要意义。已经提出了不同的预报天气参数的方法[3,6,8,9],但预报模型的参数取决于给定地区的地理条件和经济发展情况。因此,对于每一个新的位置,我们都需要重新定义模型的参数或者提出一个更合适的模型。本文提出在混合模型[2]中使用人工神经网络SVM(支持向量机)来预测当天的最高和最低温度。输入的数据是过去几天最高和最低气温、湿度、风速的历史值,以及降雨量、太阳时数的平均值。模型输入使用SVD(奇异值分解)估计的线性分解系数进行评估和选择。提出的解决方案的质量在海阳省2191天的实际数据上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications of SVM networks in hybrid model for environment parameters estimation
Weather forecast is a valuable practical problem and has important implications for agriculture, industry and other services. There have been different proposed methods to forecast the weather parameters [3, 6, 8, 9], but the parameters of the prediction model depends on the geographical conditions and the economic development of the given area. Therefore, for every new location, we need to redefine the parameters of the model or to propose a more suitable model. This paper proposes to use an artificial neural network SVM (Support Vector Machine) in a hybrid model [2] to predict the maximum and minimum temperature of the day. The input data is the historical values of maximum and minimum temperatures, humidity, wind speed and average values of rainfall, sun hours for past days. Model inputs are evaluated and selected using linear decomposition coefficients estimated using SVD (Singular Value Decomposition). The quality of the proposed solution is tested on real 2191 days data from the province of Hai Duong.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信