映射网络用于分析强制过期的音量信号

H. Gage, T. Miller
{"title":"映射网络用于分析强制过期的音量信号","authors":"H. Gage, T. Miller","doi":"10.1109/CBMSYS.1990.109421","DOIUrl":null,"url":null,"abstract":"A mapping network approach for classifying the respiratory forced expired volume signal is presented. Using reconstructed spirograms, the development and application of a backpropagation mapping network simulator to two pulmonary function classification problems is described. In the first problem, the mapping network correctly classified 95% of previously unseen volume-time curves as being indicative of normal, restricted, or obstructed pulmonary function. In the second problem, the mapping network performed at a level equivalent to a discriminant function based on standard spirometric parameters in differentiating between spirograms indicative of normal and diseased subjects. The ability of the neural network to automatically learn patterns of abnormality in biological signals makes it a potentially powerful screening tool.<<ETX>>","PeriodicalId":365366,"journal":{"name":"[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mapping networks for analysis of the forced expired volume signal\",\"authors\":\"H. Gage, T. Miller\",\"doi\":\"10.1109/CBMSYS.1990.109421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mapping network approach for classifying the respiratory forced expired volume signal is presented. Using reconstructed spirograms, the development and application of a backpropagation mapping network simulator to two pulmonary function classification problems is described. In the first problem, the mapping network correctly classified 95% of previously unseen volume-time curves as being indicative of normal, restricted, or obstructed pulmonary function. In the second problem, the mapping network performed at a level equivalent to a discriminant function based on standard spirometric parameters in differentiating between spirograms indicative of normal and diseased subjects. The ability of the neural network to automatically learn patterns of abnormality in biological signals makes it a potentially powerful screening tool.<<ETX>>\",\"PeriodicalId\":365366,\"journal\":{\"name\":\"[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMSYS.1990.109421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMSYS.1990.109421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于映射网络的呼吸强制过期容积信号分类方法。利用重建螺旋图,描述了一个反向传播映射网络模拟器的开发及其在两个肺功能分类问题中的应用。在第一个问题中,映射网络正确地将95%以前看不见的体积-时间曲线分类为正常、受限或阻塞性肺功能。在第二个问题中,映射网络的执行水平相当于基于标准肺活量测定参数的判别函数,以区分指示正常和患病受试者的肺活量图。神经网络自动学习生物信号异常模式的能力使其成为潜在的强大筛选工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping networks for analysis of the forced expired volume signal
A mapping network approach for classifying the respiratory forced expired volume signal is presented. Using reconstructed spirograms, the development and application of a backpropagation mapping network simulator to two pulmonary function classification problems is described. In the first problem, the mapping network correctly classified 95% of previously unseen volume-time curves as being indicative of normal, restricted, or obstructed pulmonary function. In the second problem, the mapping network performed at a level equivalent to a discriminant function based on standard spirometric parameters in differentiating between spirograms indicative of normal and diseased subjects. The ability of the neural network to automatically learn patterns of abnormality in biological signals makes it a potentially powerful screening tool.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信