深度或统计:对多个时间尺度的交通预测进行实证研究

Yu Qiao, Chengxiang Li, Shuzheng Hao, Junying Wu, Liang Zhang
{"title":"深度或统计:对多个时间尺度的交通预测进行实证研究","authors":"Yu Qiao, Chengxiang Li, Shuzheng Hao, Junying Wu, Liang Zhang","doi":"10.1145/3546037.3546048","DOIUrl":null,"url":null,"abstract":"Traffic prediction aims to forecast the future traffic level based on past observations. In this paper, we conduct an empirical study of traffic prediction for a campus trace on different time scales and get the following conclusions: 1) deep learning performs well on coarser time scales; 2) with a finer-granularity of time or insufficient data, statistical and regressive models outperform; 3) For a one-week trace, the granularity of 5 minutes has the strongest predictability.","PeriodicalId":351682,"journal":{"name":"Proceedings of the SIGCOMM '22 Poster and Demo Sessions","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep or statistical: an empirical study of traffic predictions on multiple time scales\",\"authors\":\"Yu Qiao, Chengxiang Li, Shuzheng Hao, Junying Wu, Liang Zhang\",\"doi\":\"10.1145/3546037.3546048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic prediction aims to forecast the future traffic level based on past observations. In this paper, we conduct an empirical study of traffic prediction for a campus trace on different time scales and get the following conclusions: 1) deep learning performs well on coarser time scales; 2) with a finer-granularity of time or insufficient data, statistical and regressive models outperform; 3) For a one-week trace, the granularity of 5 minutes has the strongest predictability.\",\"PeriodicalId\":351682,\"journal\":{\"name\":\"Proceedings of the SIGCOMM '22 Poster and Demo Sessions\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIGCOMM '22 Poster and Demo Sessions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3546037.3546048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIGCOMM '22 Poster and Demo Sessions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546037.3546048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

交通预测的目的是在过去观测的基础上预测未来的交通水平。本文对校园轨迹在不同时间尺度上的交通预测进行了实证研究,得到以下结论:1)深度学习在较粗的时间尺度上表现良好;2)当时间粒度较细或数据不足时,统计模型和回归模型表现较好;3)对于一周的跟踪,5分钟的粒度具有最强的可预测性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep or statistical: an empirical study of traffic predictions on multiple time scales
Traffic prediction aims to forecast the future traffic level based on past observations. In this paper, we conduct an empirical study of traffic prediction for a campus trace on different time scales and get the following conclusions: 1) deep learning performs well on coarser time scales; 2) with a finer-granularity of time or insufficient data, statistical and regressive models outperform; 3) For a one-week trace, the granularity of 5 minutes has the strongest predictability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信