闭环控制系统的人工智能:建模、设计和调整控制系统的新机遇

Julius Schöning, A. Riechmann, H. Pfisterer
{"title":"闭环控制系统的人工智能:建模、设计和调整控制系统的新机遇","authors":"Julius Schöning, A. Riechmann, H. Pfisterer","doi":"10.1145/3529836.3529952","DOIUrl":null,"url":null,"abstract":"Control Systems, particularly closed-loop control systems (CLCS), are frequently used in production machines, vehicles, and robots nowadays. CLCS are needed to actively align actual values of a process to a given reference or set values in real-time with a very high precession. Yet, artificial intelligence (AI) is not used to model, design, optimize, and tune CLCS. This paper will highlight potential AI-empowered and -based control system designs and designing procedures, gathering new opportunities and research direction in the field of control system engineering. Therefore, this paper illustrates which building blocks within the standard block diagram of CLCS can be replaced by AI, i.e., artificial neuronal networks (ANN). Having processes with real-time contains and functional safety in mind, it is discussed if AI-based controller blocks can cope with these demands. By concluding the paper, the pros and cons of AI-empowered as well as -based CLCS designs are discussed, and possible research directions for introducing AI in the domain of control system engineering are given.","PeriodicalId":285191,"journal":{"name":"2022 14th International Conference on Machine Learning and Computing (ICMLC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"AI for Closed-Loop Control Systems: New Opportunities for Modeling, Designing, and Tuning Control Systems\",\"authors\":\"Julius Schöning, A. Riechmann, H. Pfisterer\",\"doi\":\"10.1145/3529836.3529952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Control Systems, particularly closed-loop control systems (CLCS), are frequently used in production machines, vehicles, and robots nowadays. CLCS are needed to actively align actual values of a process to a given reference or set values in real-time with a very high precession. Yet, artificial intelligence (AI) is not used to model, design, optimize, and tune CLCS. This paper will highlight potential AI-empowered and -based control system designs and designing procedures, gathering new opportunities and research direction in the field of control system engineering. Therefore, this paper illustrates which building blocks within the standard block diagram of CLCS can be replaced by AI, i.e., artificial neuronal networks (ANN). Having processes with real-time contains and functional safety in mind, it is discussed if AI-based controller blocks can cope with these demands. By concluding the paper, the pros and cons of AI-empowered as well as -based CLCS designs are discussed, and possible research directions for introducing AI in the domain of control system engineering are given.\",\"PeriodicalId\":285191,\"journal\":{\"name\":\"2022 14th International Conference on Machine Learning and Computing (ICMLC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Machine Learning and Computing (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3529836.3529952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Machine Learning and Computing (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529836.3529952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

控制系统,特别是闭环控制系统(CLCS),现在经常用于生产机器,车辆和机器人。需要CLCS主动地将进程的实际值与给定的参考或具有非常高进动的实时设定值对齐。然而,人工智能(AI)并没有被用于建模、设计、优化和调优CLCS。本文将重点介绍潜在的基于人工智能的控制系统设计和设计过程,收集控制系统工程领域的新机遇和研究方向。因此,本文阐述了CLCS标准框图中的哪些构建块可以被AI即人工神经网络(ANN)所取代。考虑到实时包含和功能安全的进程,讨论了基于人工智能的控制器块是否可以满足这些需求。最后,讨论了基于人工智能和基于人工智能的CLCS设计的优缺点,并给出了在控制系统工程领域引入人工智能的可能研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI for Closed-Loop Control Systems: New Opportunities for Modeling, Designing, and Tuning Control Systems
Control Systems, particularly closed-loop control systems (CLCS), are frequently used in production machines, vehicles, and robots nowadays. CLCS are needed to actively align actual values of a process to a given reference or set values in real-time with a very high precession. Yet, artificial intelligence (AI) is not used to model, design, optimize, and tune CLCS. This paper will highlight potential AI-empowered and -based control system designs and designing procedures, gathering new opportunities and research direction in the field of control system engineering. Therefore, this paper illustrates which building blocks within the standard block diagram of CLCS can be replaced by AI, i.e., artificial neuronal networks (ANN). Having processes with real-time contains and functional safety in mind, it is discussed if AI-based controller blocks can cope with these demands. By concluding the paper, the pros and cons of AI-empowered as well as -based CLCS designs are discussed, and possible research directions for introducing AI in the domain of control system engineering are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信