Wei Yang Bryan Lim, Jer Shyuan Ng, Zehui Xiong, D. Niyato, Song Guo, Cyril Leung, C. Miao
{"title":"分层联邦学习的动态资源分配","authors":"Wei Yang Bryan Lim, Jer Shyuan Ng, Zehui Xiong, D. Niyato, Song Guo, Cyril Leung, C. Miao","doi":"10.1109/MSN50589.2020.00038","DOIUrl":null,"url":null,"abstract":"One of the enabling technologies of Edge Intelligence is the privacy preserving machine learning paradigm called Federated Learning (FL). However, communication inefficiency remains a key bottleneck in FL. To reduce node failures and device dropouts, the Hierarchical Federated Learning (HFL) framework has been proposed whereby cluster heads are designated to support the data owners through intermediate model aggregation. This decentralized learning approach reduces the reliance on a central controller, e.g., the model owner. However, the issues of resource allocation and incentive design are not well-studied in the HFL framework. In this paper, we consider a two-level resource allocation and incentive mechanism design problem. In the lower level, the cluster heads offer rewards in exchange of the data owners’ participation, and the data owners are free to choose among any clusters to join. Specifically, we apply the evolutionary game theory to model the dynamics of the cluster selection process. In the upper level, given that each cluster head can choose to serve a model owner, the model owners have to compete for the services of the cluster head. As such, we propose a deep learning based auction mechanism to derive the valuation of each cluster head’s services. The performance evaluation shows the uniqueness and stability of our proposed evolutionary game, as well as the revenue maximizing property of the deep learning based auction.","PeriodicalId":447605,"journal":{"name":"2020 16th International Conference on Mobility, Sensing and Networking (MSN)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Dynamic Resource Allocation for Hierarchical Federated Learning\",\"authors\":\"Wei Yang Bryan Lim, Jer Shyuan Ng, Zehui Xiong, D. Niyato, Song Guo, Cyril Leung, C. Miao\",\"doi\":\"10.1109/MSN50589.2020.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the enabling technologies of Edge Intelligence is the privacy preserving machine learning paradigm called Federated Learning (FL). However, communication inefficiency remains a key bottleneck in FL. To reduce node failures and device dropouts, the Hierarchical Federated Learning (HFL) framework has been proposed whereby cluster heads are designated to support the data owners through intermediate model aggregation. This decentralized learning approach reduces the reliance on a central controller, e.g., the model owner. However, the issues of resource allocation and incentive design are not well-studied in the HFL framework. In this paper, we consider a two-level resource allocation and incentive mechanism design problem. In the lower level, the cluster heads offer rewards in exchange of the data owners’ participation, and the data owners are free to choose among any clusters to join. Specifically, we apply the evolutionary game theory to model the dynamics of the cluster selection process. In the upper level, given that each cluster head can choose to serve a model owner, the model owners have to compete for the services of the cluster head. As such, we propose a deep learning based auction mechanism to derive the valuation of each cluster head’s services. The performance evaluation shows the uniqueness and stability of our proposed evolutionary game, as well as the revenue maximizing property of the deep learning based auction.\",\"PeriodicalId\":447605,\"journal\":{\"name\":\"2020 16th International Conference on Mobility, Sensing and Networking (MSN)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 16th International Conference on Mobility, Sensing and Networking (MSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSN50589.2020.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 16th International Conference on Mobility, Sensing and Networking (MSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSN50589.2020.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic Resource Allocation for Hierarchical Federated Learning
One of the enabling technologies of Edge Intelligence is the privacy preserving machine learning paradigm called Federated Learning (FL). However, communication inefficiency remains a key bottleneck in FL. To reduce node failures and device dropouts, the Hierarchical Federated Learning (HFL) framework has been proposed whereby cluster heads are designated to support the data owners through intermediate model aggregation. This decentralized learning approach reduces the reliance on a central controller, e.g., the model owner. However, the issues of resource allocation and incentive design are not well-studied in the HFL framework. In this paper, we consider a two-level resource allocation and incentive mechanism design problem. In the lower level, the cluster heads offer rewards in exchange of the data owners’ participation, and the data owners are free to choose among any clusters to join. Specifically, we apply the evolutionary game theory to model the dynamics of the cluster selection process. In the upper level, given that each cluster head can choose to serve a model owner, the model owners have to compete for the services of the cluster head. As such, we propose a deep learning based auction mechanism to derive the valuation of each cluster head’s services. The performance evaluation shows the uniqueness and stability of our proposed evolutionary game, as well as the revenue maximizing property of the deep learning based auction.