{"title":"基于扩散的多发射机分子通信系统分析","authors":"N. Sabu, Abhishek K. Gupta","doi":"10.1109/SPCOM50965.2020.9179506","DOIUrl":null,"url":null,"abstract":"Due to the limited capabilities of a single bionanomachine, complicated tasks can be performed only with the co-operation of multiple bio-nanomachines. In this work, we consider a diffusion-based molecular communication system with a transmitter bio-nanomachine (TBN) communicating with a fully-absorbing spherical receiver bio-nanomachine (RBN) in the presence of other TBNs. The bits transmitted by each of the TBNs are considered as random in each time slot and different for each TBNs contrary to the past works in literature with deterministic bits, which are the same to all TBNs. The TBNs are modeled using a marked Poisson point process (PPP) with the location of TBNs as points of PPP, and the transmit bits as marks. In this paper, we derive the expected number of molecules observed at the RBN and the bit error probability of the system. We validate our analysis using numerical results and provide various design insights about the system.","PeriodicalId":208527,"journal":{"name":"2020 International Conference on Signal Processing and Communications (SPCOM)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of Diffusion Based Molecular Communication System with Multiple Transmitters\",\"authors\":\"N. Sabu, Abhishek K. Gupta\",\"doi\":\"10.1109/SPCOM50965.2020.9179506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the limited capabilities of a single bionanomachine, complicated tasks can be performed only with the co-operation of multiple bio-nanomachines. In this work, we consider a diffusion-based molecular communication system with a transmitter bio-nanomachine (TBN) communicating with a fully-absorbing spherical receiver bio-nanomachine (RBN) in the presence of other TBNs. The bits transmitted by each of the TBNs are considered as random in each time slot and different for each TBNs contrary to the past works in literature with deterministic bits, which are the same to all TBNs. The TBNs are modeled using a marked Poisson point process (PPP) with the location of TBNs as points of PPP, and the transmit bits as marks. In this paper, we derive the expected number of molecules observed at the RBN and the bit error probability of the system. We validate our analysis using numerical results and provide various design insights about the system.\",\"PeriodicalId\":208527,\"journal\":{\"name\":\"2020 International Conference on Signal Processing and Communications (SPCOM)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Signal Processing and Communications (SPCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPCOM50965.2020.9179506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM50965.2020.9179506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of Diffusion Based Molecular Communication System with Multiple Transmitters
Due to the limited capabilities of a single bionanomachine, complicated tasks can be performed only with the co-operation of multiple bio-nanomachines. In this work, we consider a diffusion-based molecular communication system with a transmitter bio-nanomachine (TBN) communicating with a fully-absorbing spherical receiver bio-nanomachine (RBN) in the presence of other TBNs. The bits transmitted by each of the TBNs are considered as random in each time slot and different for each TBNs contrary to the past works in literature with deterministic bits, which are the same to all TBNs. The TBNs are modeled using a marked Poisson point process (PPP) with the location of TBNs as points of PPP, and the transmit bits as marks. In this paper, we derive the expected number of molecules observed at the RBN and the bit error probability of the system. We validate our analysis using numerical results and provide various design insights about the system.