{"title":"可压缩贝克映射及其逆。弗朗西斯·海因·雷回忆录[1936-2020]","authors":"W. G. Hoover","doi":"10.12921/cmst.2020.0000007","DOIUrl":null,"url":null,"abstract":"This memoir is dedicated to the late Francis Hayin Ree, a formative influence shaping my work in statistical mechanics. Between 1963 and 1968 we collaborated on nine papers published in the Journal of Chemical Physics. Those dealt with the virial series, cell models, and computer simulation. All of them were directed toward understanding the statistical thermodynamics of simple model systems. Our last joint work is also the most cited, with over 1000 citations, \"Melting Transition and Communal Entropy for Hard Spheres\", submitted 3 May 1968 and published that October. Here I summarize my own most recent work on compressible time-reversible two-dimensional maps. These simplest of model systems are amenable to computer simulation and are providing stimulating and surprising results.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Compressible Baker Maps and Their Inverses. A Memoir for Francis Hayin Ree [ 1936-2020 ]\",\"authors\":\"W. G. Hoover\",\"doi\":\"10.12921/cmst.2020.0000007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This memoir is dedicated to the late Francis Hayin Ree, a formative influence shaping my work in statistical mechanics. Between 1963 and 1968 we collaborated on nine papers published in the Journal of Chemical Physics. Those dealt with the virial series, cell models, and computer simulation. All of them were directed toward understanding the statistical thermodynamics of simple model systems. Our last joint work is also the most cited, with over 1000 citations, \\\"Melting Transition and Communal Entropy for Hard Spheres\\\", submitted 3 May 1968 and published that October. Here I summarize my own most recent work on compressible time-reversible two-dimensional maps. These simplest of model systems are amenable to computer simulation and are providing stimulating and surprising results.\",\"PeriodicalId\":166772,\"journal\":{\"name\":\"arXiv: Chaotic Dynamics\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12921/cmst.2020.0000007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12921/cmst.2020.0000007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compressible Baker Maps and Their Inverses. A Memoir for Francis Hayin Ree [ 1936-2020 ]
This memoir is dedicated to the late Francis Hayin Ree, a formative influence shaping my work in statistical mechanics. Between 1963 and 1968 we collaborated on nine papers published in the Journal of Chemical Physics. Those dealt with the virial series, cell models, and computer simulation. All of them were directed toward understanding the statistical thermodynamics of simple model systems. Our last joint work is also the most cited, with over 1000 citations, "Melting Transition and Communal Entropy for Hard Spheres", submitted 3 May 1968 and published that October. Here I summarize my own most recent work on compressible time-reversible two-dimensional maps. These simplest of model systems are amenable to computer simulation and are providing stimulating and surprising results.