{"title":"片上网络互连中卡在故障的包地址驱动测试策略","authors":"B. Bhowmik, S. Biswas, J. Deka","doi":"10.1109/MED.2015.7158747","DOIUrl":null,"url":null,"abstract":"With the rapid advancements of deep submicron and nano technologies the dimension of a chip is ever shrinking. With continuous shrinking of chip dimensions, immense interconnects are associated on a die to satisfy high bandwidth requirements and make a network-on-chip (NoC) architecture prone to large number of interconnect faults. Therefore the reliability becomes a crucial issue for the communicating parties in a NoC communication fabric. This paper presents a packet address driven test strategy that diagnoses NoC interconnects experiencing stuck-at (stuck-at-0 and stuck-at-1) faults. The proposed strategy is scalable to all sizes and types of mesh NoCs and can be extended to other NoCs. The simulation is done on a number of mesh NoCs to establish the scalability. The simulation results show the performance measured in terms of test and fault coverages that can reach to 100% at the expense of few CPU clocks.","PeriodicalId":316642,"journal":{"name":"2015 23rd Mediterranean Conference on Control and Automation (MED)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A packet address driven test strategy for stuck-at faults in networks-on-chip interconnects\",\"authors\":\"B. Bhowmik, S. Biswas, J. Deka\",\"doi\":\"10.1109/MED.2015.7158747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid advancements of deep submicron and nano technologies the dimension of a chip is ever shrinking. With continuous shrinking of chip dimensions, immense interconnects are associated on a die to satisfy high bandwidth requirements and make a network-on-chip (NoC) architecture prone to large number of interconnect faults. Therefore the reliability becomes a crucial issue for the communicating parties in a NoC communication fabric. This paper presents a packet address driven test strategy that diagnoses NoC interconnects experiencing stuck-at (stuck-at-0 and stuck-at-1) faults. The proposed strategy is scalable to all sizes and types of mesh NoCs and can be extended to other NoCs. The simulation is done on a number of mesh NoCs to establish the scalability. The simulation results show the performance measured in terms of test and fault coverages that can reach to 100% at the expense of few CPU clocks.\",\"PeriodicalId\":316642,\"journal\":{\"name\":\"2015 23rd Mediterranean Conference on Control and Automation (MED)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd Mediterranean Conference on Control and Automation (MED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2015.7158747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2015.7158747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A packet address driven test strategy for stuck-at faults in networks-on-chip interconnects
With the rapid advancements of deep submicron and nano technologies the dimension of a chip is ever shrinking. With continuous shrinking of chip dimensions, immense interconnects are associated on a die to satisfy high bandwidth requirements and make a network-on-chip (NoC) architecture prone to large number of interconnect faults. Therefore the reliability becomes a crucial issue for the communicating parties in a NoC communication fabric. This paper presents a packet address driven test strategy that diagnoses NoC interconnects experiencing stuck-at (stuck-at-0 and stuck-at-1) faults. The proposed strategy is scalable to all sizes and types of mesh NoCs and can be extended to other NoCs. The simulation is done on a number of mesh NoCs to establish the scalability. The simulation results show the performance measured in terms of test and fault coverages that can reach to 100% at the expense of few CPU clocks.