德国退化计划猎鹰计划基于一种新开发的数字设计方法对需求做出精确的随机计算

A. Schmid, Thomas Sobottka, Samuel Luther, W. Sihn
{"title":"德国退化计划猎鹰计划基于一种新开发的数字设计方法对需求做出精确的随机计算","authors":"A. Schmid, Thomas Sobottka, Samuel Luther, W. Sihn","doi":"10.30844/im_22-6_47-50","DOIUrl":null,"url":null,"abstract":"Präzise Bedarfsprognosen sind der Schlüssel für eine erfolgreiche Materialdisposition. EntscheidungsträgerInnen stehen jedoch vor dem Dilemma, welches Prognoseverfahren sie verwenden sollen. Zumeist fehlt auch das Methodenwissen, um komplexe mathematische Prognoseverfahren anwenden zu können. Doch auch nach der Wahl des Prognoseverfahrens verbleibt noch die Hürde, die Prognoseverfahren optimal zu parametrisieren. Der vorliegende Beitrag untersucht das Optimierungspotenzial eines selbst entwickelten automatisch optimierenden Prognoseansatzes auf Basis zehngängiger Prognoseverfahren. In die Praxis umgesetzt wurde die Methode im Forschungsprojekt DISPO 4.0 im digitalen Planungstool Demand Planning Falcon, das zielgenaue Bedarfsprognosen für die Investitionsgüterindustrie erstellt.","PeriodicalId":346026,"journal":{"name":"Industrie 4.0 Management","volume":"293 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Demand Planning Falcon – Zielgenaue, stochastische Bedarfsvorhersagen mit einer neu entwickelten digitalen Planungsmethode\",\"authors\":\"A. Schmid, Thomas Sobottka, Samuel Luther, W. Sihn\",\"doi\":\"10.30844/im_22-6_47-50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Präzise Bedarfsprognosen sind der Schlüssel für eine erfolgreiche Materialdisposition. EntscheidungsträgerInnen stehen jedoch vor dem Dilemma, welches Prognoseverfahren sie verwenden sollen. Zumeist fehlt auch das Methodenwissen, um komplexe mathematische Prognoseverfahren anwenden zu können. Doch auch nach der Wahl des Prognoseverfahrens verbleibt noch die Hürde, die Prognoseverfahren optimal zu parametrisieren. Der vorliegende Beitrag untersucht das Optimierungspotenzial eines selbst entwickelten automatisch optimierenden Prognoseansatzes auf Basis zehngängiger Prognoseverfahren. In die Praxis umgesetzt wurde die Methode im Forschungsprojekt DISPO 4.0 im digitalen Planungstool Demand Planning Falcon, das zielgenaue Bedarfsprognosen für die Investitionsgüterindustrie erstellt.\",\"PeriodicalId\":346026,\"journal\":{\"name\":\"Industrie 4.0 Management\",\"volume\":\"293 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrie 4.0 Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30844/im_22-6_47-50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrie 4.0 Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30844/im_22-6_47-50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

确切的需求评估是成功实现材料部署的关键。但是影响者面临着想要如何进行预测的两难。方法方法都不具备应用复杂数学方法的方法。然而,预测过程经过选择之后,还是必定会被提高到十分完美的程度。本文研究了自我发育的十年预测方法的可能变得最乐观。在课堂上
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demand Planning Falcon – Zielgenaue, stochastische Bedarfsvorhersagen mit einer neu entwickelten digitalen Planungsmethode
Präzise Bedarfsprognosen sind der Schlüssel für eine erfolgreiche Materialdisposition. EntscheidungsträgerInnen stehen jedoch vor dem Dilemma, welches Prognoseverfahren sie verwenden sollen. Zumeist fehlt auch das Methodenwissen, um komplexe mathematische Prognoseverfahren anwenden zu können. Doch auch nach der Wahl des Prognoseverfahrens verbleibt noch die Hürde, die Prognoseverfahren optimal zu parametrisieren. Der vorliegende Beitrag untersucht das Optimierungspotenzial eines selbst entwickelten automatisch optimierenden Prognoseansatzes auf Basis zehngängiger Prognoseverfahren. In die Praxis umgesetzt wurde die Methode im Forschungsprojekt DISPO 4.0 im digitalen Planungstool Demand Planning Falcon, das zielgenaue Bedarfsprognosen für die Investitionsgüterindustrie erstellt.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信