双参数自适应控制系统理论

V. Rajaraman
{"title":"双参数自适应控制系统理论","authors":"V. Rajaraman","doi":"10.1109/TAC.1962.1105481","DOIUrl":null,"url":null,"abstract":"A two-parameter adaptive control system employing multiple models and model-parameter perturbation is proposed in this paper. Theoretical studies of this system have shown that it is self-adaptive when both the input signal and the parameters of the system vary unpredictably. It is shown that the two parameters of the feedback system are adjusted automatically along the path of steepest descent of the performance measure-parameters surface. An interesting feature of this system is that the perturbation signals do not appear at the output of the controlled system.","PeriodicalId":226447,"journal":{"name":"Ire Transactions on Automatic Control","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1962-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Theory of a two-parameter adaptive control system\",\"authors\":\"V. Rajaraman\",\"doi\":\"10.1109/TAC.1962.1105481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A two-parameter adaptive control system employing multiple models and model-parameter perturbation is proposed in this paper. Theoretical studies of this system have shown that it is self-adaptive when both the input signal and the parameters of the system vary unpredictably. It is shown that the two parameters of the feedback system are adjusted automatically along the path of steepest descent of the performance measure-parameters surface. An interesting feature of this system is that the perturbation signals do not appear at the output of the controlled system.\",\"PeriodicalId\":226447,\"journal\":{\"name\":\"Ire Transactions on Automatic Control\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1962-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ire Transactions on Automatic Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAC.1962.1105481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ire Transactions on Automatic Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAC.1962.1105481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种采用多模型和模型参数摄动的双参数自适应控制系统。理论研究表明,该系统在输入信号和系统参数均发生不可预测变化时具有自适应能力。结果表明,反馈系统的两个参数沿性能测量参数面最陡下降路径自动调整。该系统的一个有趣的特征是摄动信号不会出现在被控系统的输出端。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theory of a two-parameter adaptive control system
A two-parameter adaptive control system employing multiple models and model-parameter perturbation is proposed in this paper. Theoretical studies of this system have shown that it is self-adaptive when both the input signal and the parameters of the system vary unpredictably. It is shown that the two parameters of the feedback system are adjusted automatically along the path of steepest descent of the performance measure-parameters surface. An interesting feature of this system is that the perturbation signals do not appear at the output of the controlled system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信