制造系统设计中变体的自动推导

Gökhan Kahraman, L. Cleophas
{"title":"制造系统设计中变体的自动推导","authors":"Gökhan Kahraman, L. Cleophas","doi":"10.1145/3461002.3473942","DOIUrl":null,"url":null,"abstract":"The Logistics Specification and Analysis Tool (LSAT) is a modelbased engineering tool used for design-space exploration of flexible manufacturing systems. LSAT provides domain specific languages to model a manufacturing system and means to analyze the productivity characteristics of such a system. In LSAT, developers can specify a system and model its deterministic operations as a set of activities. Given a set of activities, it is possible to construct an individual activity sequence that represents one valid system execution, and with minor variations in the specification individual systems can be obtained. To avoid modeling each variant separately, which means cloning and maintaining the common parts, new functionality is needed to deal with the variability of system specifications. In this study, we aim to establish integration between LSAT and product line engineering techniques. Specifically, we provide a realization of a toolchain including variability representation of LSAT realization artifacts and automated variant derivation for the LSAT model variants. Delta modeling, a transformational variability realization mechanism, is employed to model the variability within LSAT realization artifacts. Using the toolchain, we develop an industry-related case for a product line, the so called Extended Twilight System, a Cyber Physical System (CPS) inspired by the CPSs of our industrial partner.","PeriodicalId":416819,"journal":{"name":"Proceedings of the 25th ACM International Systems and Software Product Line Conference - Volume B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Automated derivation of variants in manufacturing systems design\",\"authors\":\"Gökhan Kahraman, L. Cleophas\",\"doi\":\"10.1145/3461002.3473942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Logistics Specification and Analysis Tool (LSAT) is a modelbased engineering tool used for design-space exploration of flexible manufacturing systems. LSAT provides domain specific languages to model a manufacturing system and means to analyze the productivity characteristics of such a system. In LSAT, developers can specify a system and model its deterministic operations as a set of activities. Given a set of activities, it is possible to construct an individual activity sequence that represents one valid system execution, and with minor variations in the specification individual systems can be obtained. To avoid modeling each variant separately, which means cloning and maintaining the common parts, new functionality is needed to deal with the variability of system specifications. In this study, we aim to establish integration between LSAT and product line engineering techniques. Specifically, we provide a realization of a toolchain including variability representation of LSAT realization artifacts and automated variant derivation for the LSAT model variants. Delta modeling, a transformational variability realization mechanism, is employed to model the variability within LSAT realization artifacts. Using the toolchain, we develop an industry-related case for a product line, the so called Extended Twilight System, a Cyber Physical System (CPS) inspired by the CPSs of our industrial partner.\",\"PeriodicalId\":416819,\"journal\":{\"name\":\"Proceedings of the 25th ACM International Systems and Software Product Line Conference - Volume B\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM International Systems and Software Product Line Conference - Volume B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3461002.3473942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International Systems and Software Product Line Conference - Volume B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3461002.3473942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

物流规范与分析工具(LSAT)是一种基于模型的工程工具,用于柔性制造系统的设计空间探索。LSAT提供了特定领域的语言来对制造系统进行建模,并提供了分析该系统生产率特征的方法。在LSAT中,开发人员可以指定系统并将其确定性操作建模为一组活动。给定一组活动,可以构造一个单独的活动序列来表示一个有效的系统执行,并且通过规范中的微小变化可以获得单独的系统。为了避免对每个变体分别建模,这意味着克隆和维护公共部分,需要新的功能来处理系统规范的可变性。在本研究中,我们的目标是建立LSAT与产品线工程技术之间的整合。具体地说,我们提供了一个工具链的实现,包括LSAT实现工件的可变性表示和LSAT模型变体的自动变体派生。Delta建模是一种转换的可变性实现机制,用于对LSAT实现工件中的可变性进行建模。使用工具链,我们为产品线开发了一个与行业相关的案例,即所谓的扩展暮光系统,这是一个受我们工业合作伙伴CPS启发的网络物理系统(CPS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated derivation of variants in manufacturing systems design
The Logistics Specification and Analysis Tool (LSAT) is a modelbased engineering tool used for design-space exploration of flexible manufacturing systems. LSAT provides domain specific languages to model a manufacturing system and means to analyze the productivity characteristics of such a system. In LSAT, developers can specify a system and model its deterministic operations as a set of activities. Given a set of activities, it is possible to construct an individual activity sequence that represents one valid system execution, and with minor variations in the specification individual systems can be obtained. To avoid modeling each variant separately, which means cloning and maintaining the common parts, new functionality is needed to deal with the variability of system specifications. In this study, we aim to establish integration between LSAT and product line engineering techniques. Specifically, we provide a realization of a toolchain including variability representation of LSAT realization artifacts and automated variant derivation for the LSAT model variants. Delta modeling, a transformational variability realization mechanism, is employed to model the variability within LSAT realization artifacts. Using the toolchain, we develop an industry-related case for a product line, the so called Extended Twilight System, a Cyber Physical System (CPS) inspired by the CPSs of our industrial partner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信