在更高的字母上的拓扑颜色代码

P. Sarvepalli
{"title":"在更高的字母上的拓扑颜色代码","authors":"P. Sarvepalli","doi":"10.1109/CIG.2010.5592860","DOIUrl":null,"url":null,"abstract":"Color codes are a class of topological codes that have come into prominence in the recent years. Like the surface codes the codespace defined by them can be associated to the degenerate ground state of a local Hamiltonian. In addition they can be designed to have an extended set of transversal encoded gates (compared to surface codes) increasing their appeal for fault tolerant quantum computation. In this paper we generalize the color codes to arbitrary prime power alphabet. We show that in the 2D case there exist color codes for which the nonbinary Clifford group can be implemented transversally.","PeriodicalId":354925,"journal":{"name":"2010 IEEE Information Theory Workshop","volume":"292 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Topological color codes over higher alphabet\",\"authors\":\"P. Sarvepalli\",\"doi\":\"10.1109/CIG.2010.5592860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Color codes are a class of topological codes that have come into prominence in the recent years. Like the surface codes the codespace defined by them can be associated to the degenerate ground state of a local Hamiltonian. In addition they can be designed to have an extended set of transversal encoded gates (compared to surface codes) increasing their appeal for fault tolerant quantum computation. In this paper we generalize the color codes to arbitrary prime power alphabet. We show that in the 2D case there exist color codes for which the nonbinary Clifford group can be implemented transversally.\",\"PeriodicalId\":354925,\"journal\":{\"name\":\"2010 IEEE Information Theory Workshop\",\"volume\":\"292 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Information Theory Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2010.5592860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2010.5592860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

色码是近年来崭露头角的一类拓扑码。像表面码一样,它们所定义的码空间可以与局部哈密顿量的简并基态相关联。此外,它们可以被设计成具有一组扩展的横向编码门(与表面编码相比),从而增加它们对容错量子计算的吸引力。本文将色码推广到任意素数幂字母。我们证明了在二维情况下存在可以横向实现非二进制Clifford群的色码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological color codes over higher alphabet
Color codes are a class of topological codes that have come into prominence in the recent years. Like the surface codes the codespace defined by them can be associated to the degenerate ground state of a local Hamiltonian. In addition they can be designed to have an extended set of transversal encoded gates (compared to surface codes) increasing their appeal for fault tolerant quantum computation. In this paper we generalize the color codes to arbitrary prime power alphabet. We show that in the 2D case there exist color codes for which the nonbinary Clifford group can be implemented transversally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信